5,172 research outputs found

    Image interpolation with edge-preserving differential motion refinement

    Get PDF
    Motion estimation (ME) methods based on differential techniques provide useful information for video analysis, and moreover it is relatively easy to embed into them regularity constraints en- forcing for example, contour preservation. On the other hand, these techniques are rarely employed for video compression since, though accurate, the dense motion vector field (MVF) they produce requires too much coding resource and computational effort. However, this kind of algorithm could be useful in the framework of distributed video coding (DVC), where the motion vector are computed at the decoder side, so that no bit-rate is needed to transmit them. More- over usually the decoder has enough computational power to face with the increased complexity of differential ME. In this paper we introduce a new image interpolation algorithm to be used in the context of DVC. This algorithm combines a popular DVC technique with differential ME. We adapt a pel-recursive differential ME algorithm to the DVC context; moreover we insert a regularity constraint which allows more consistent MVFs. The experimental results are encouraging: the quality of interpolated images is improved of up to 1.1 dB w.r.t. to state-of-the-art techniques. These results prove to be consistent when we use different GOP sizes

    초점 스택에서 3D 깊이 재구성 및 깊이 개선

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2021. 2. 신영길.Three-dimensional (3D) depth recovery from two-dimensional images is a fundamental and challenging objective in computer vision, and is one of the most important prerequisites for many applications such as 3D measurement, robot location and navigation, self-driving, and so on. Depth-from-focus (DFF) is one of the important methods to reconstruct a 3D depth in the use of focus information. Reconstructing a 3D depth from texture-less regions is a typical issue associated with the conventional DFF. Further more, it is difficult for the conventional DFF reconstruction techniques to preserve depth edges and fine details while maintaining spatial consistency. In this dissertation, we address these problems and propose an DFF depth recovery framework which is robust over texture-less regions, and can reconstruct a depth image with clear edges and fine details. The depth recovery framework proposed in this dissertation is composed of two processes: depth reconstruction and depth refinement. To recovery an accurate 3D depth, We first formulate the depth reconstruction as a maximum a posterior (MAP) estimation problem with the inclusion of matting Laplacian prior. The nonlocal principle is adopted during the construction stage of the matting Laplacian matrix to preserve depth edges and fine details. Additionally, a depth variance based confidence measure with the combination of the reliability measure of focus measure is proposed to maintain the spatial smoothness, such that the smooth depth regions in initial depth could have high confidence value and the reconstructed depth could be more derived from the initial depth. As the nonlocal principle breaks the spatial consistency, the reconstructed depth image is spatially inconsistent. Meanwhile, it suffers from texture-copy artifacts. To smooth the noise and suppress the texture-copy artifacts introduced in the reconstructed depth image, we propose a closed-form edge-preserving depth refinement algorithm that formulates the depth refinement as a MAP estimation problem using Markov random fields (MRFs). With the incorporation of pre-estimated depth edges and mutual structure information into our energy function and the specially designed smoothness weight, the proposed refinement method can effectively suppress noise and texture-copy artifacts while preserving depth edges. Additionally, with the construction of undirected weighted graph representing the energy function, a closed-form solution is obtained by using the Laplacian matrix corresponding to the graph. The proposed framework presents a novel method of 3D depth recovery from a focal stack. The proposed algorithm shows the superiority in depth recovery over texture-less regions owing to the effective variance based confidence level computation and the matting Laplacian prior. Additionally, this proposed reconstruction method can obtain a depth image with clear edges and fine details due to the adoption of nonlocal principle in the construct]ion of matting Laplacian matrix. The proposed closed-form depth refinement approach shows that the ability in noise removal while preserving object structure with the usage of common edges. Additionally, it is able to effectively suppress texture-copy artifacts by utilizing mutual structure information. The proposed depth refinement provides a general idea for edge-preserving image smoothing, especially for depth related refinement such as stereo vision. Both quantitative and qualitative experimental results show the supremacy of the proposed method in terms of robustness in texture-less regions, accuracy, and ability to preserve object structure while maintaining spatial smoothness.Chapter 1 Introduction 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Related Works 9 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Principle of depth-from-focus . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Focus measure operators . . . . . . . . . . . . . . . . . . . 12 2.3 Depth-from-focus reconstruction . . . . . . . . . . . . . . . . . . 14 2.4 Edge-preserving image denoising . . . . . . . . . . . . . . . . . . 23 Chapter 3 Depth-from-Focus Reconstruction using Nonlocal Matting Laplacian Prior 38 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Image matting and matting Laplacian . . . . . . . . . . . . . . . 40 3.3 Depth-from-focus . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Depth reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Likelihood model . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.3 Nonlocal matting Laplacian prior model . . . . . . . . . . 50 3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.2 Data configuration . . . . . . . . . . . . . . . . . . . . . . 55 3.5.3 Reconstruction results . . . . . . . . . . . . . . . . . . . . 56 3.5.4 Comparison between reconstruction using local and nonlocal matting Laplacian . . . . . . . . . . . . . . . . . . . 56 3.5.5 Spatial consistency analysis . . . . . . . . . . . . . . . . . 59 3.5.6 Parameter setting and analysis . . . . . . . . . . . . . . . 59 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Chapter 4 Closed-form MRF-based Depth Refinement 63 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3 Closed-form solution . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 Edge preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Texture-copy artifacts suppression . . . . . . . . . . . . . . . . . 73 4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Chapter 5 Evaluation 82 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3 Evaluation on synthetic datasets . . . . . . . . . . . . . . . . . . 84 5.4 Evaluation on real scene datasets . . . . . . . . . . . . . . . . . . 89 5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6 Computational performances . . . . . . . . . . . . . . . . . . . . 93 Chapter 6 Conclusion 96 Bibliography 99Docto

    PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

    Full text link
    We present a compact but effective CNN model for optical flow, called PWC-Net. PWC-Net has been designed according to simple and well-established principles: pyramidal processing, warping, and the use of a cost volume. Cast in a learnable feature pyramid, PWC-Net uses the cur- rent optical flow estimate to warp the CNN features of the second image. It then uses the warped features and features of the first image to construct a cost volume, which is processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in size and easier to train than the recent FlowNet2 model. Moreover, it outperforms all published optical flow methods on the MPI Sintel final pass and KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024x436) images. Our models are available on https://github.com/NVlabs/PWC-Net.Comment: CVPR 2018 camera ready version (with github link to Caffe and PyTorch code

    PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI

    Get PDF
    In this paper we present a novel method for the correction of motion artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patch-wise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR's computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical Imaging. v2: wadded funders acknowledgements to preprin

    High-order Discretization of a Gyrokinetic Vlasov Model in Edge Plasma Geometry

    Full text link
    We present a high-order spatial discretization of a continuum gyrokinetic Vlasov model in axisymmetric tokamak edge plasma geometries. Such models describe the phase space advection of plasma species distribution functions in the absence of collisions. The gyrokinetic model is posed in a four-dimensional phase space, upon which a grid is imposed when discretized. To mitigate the computational cost associated with high-dimensional grids, we employ a high-order discretization to reduce the grid size needed to achieve a given level of accuracy relative to lower-order methods. Strong anisotropy induced by the magnetic field motivates the use of mapped coordinate grids aligned with magnetic flux surfaces. The natural partitioning of the edge geometry by the separatrix between the closed and open field line regions leads to the consideration of multiple mapped blocks, in what is known as a mapped multiblock (MMB) approach. We describe the specialization of a more general formalism that we have developed for the construction of high-order, finite-volume discretizations on MMB grids, yielding the accurate evaluation of the gyrokinetic Vlasov operator, the metric factors resulting from the MMB coordinate mappings, and the interaction of blocks at adjacent boundaries. Our conservative formulation of the gyrokinetic Vlasov model incorporates the fact that the phase space velocity has zero divergence, which must be preserved discretely to avoid truncation error accumulation. We describe an approach for the discrete evaluation of the gyrokinetic phase space velocity that preserves the divergence-free property to machine precision

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page
    corecore