10,338 research outputs found

    Detection of leaf structures in close-range hyperspectral images using morphological fusion

    Get PDF
    Close-range hyperspectral images are a promising source of information in plant biology, in particular, for in vivo study of physiological changes. In this study, we investigate how data fusion can improve the detection of leaf elements by combining pixel reflectance and morphological information. The detection of image regions associated to the leaf structures is the first step toward quantitative analysis on the physical effects that genetic manipulation, disease infections, and environmental conditions have in plants. We tested our fusion approach on Musa acuminata (banana) leaf images and compared its discriminant capability to similar techniques used in remote sensing. Experimental results demonstrate the efficiency of our fusion approach, with significant improvements over some conventional methods

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161–173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37–67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575–585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167–1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9–14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208–209, 2000. [48] M. K¨oppen, C.H. Nowack and G. R¨osel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195–202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251–267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175–178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67–73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169–172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749–750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167–185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69–87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674–693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367–381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    Use of multi-angle high-resolution imagery and 3D information for urban land-cover classification: a case study on Istanbul

    Get PDF
    The BELSPO-MAMUD project focuses on the use of Remote Sensing data for measuring and modelling urban dynamics. Remote sensing is a wonderful tool to produce long time-series of high resolution maps of sealed surface useful for this purpose. In the urban context of Istanbul, a very dynamic city, recent high resolution satellite images and medium resolution images from the past have been exploited to calibrate and validate a regression-based sub-pixel classification method allowing this production. In this context it’s a tricky task for several reasons: prominent occurrence of shadowed and occluded areas and urban canyons, spectral confusions between urban and non-urban materials at ground and roof levels, moderately hilly relief ... To cope with these difficulties the combined use of three types of data may be helpful: diachronic (i), multi-angle and 3D data. A master multispectral and panchromatic QuickBird image and a panchromatic Ikonos stereopair, all acquired in March 2002, were used in combination with a multispectral and panchromatic Ikonos image of May 2005. A DSM was generated from the Ikonos stereopair and building vector file. It was used for orthorectification, building height estimation and classification procedure. The area covered by the high resolution products was divided in 3 partitions and each one was classified independently. This application demonstrates that recent high resolution land-cover classification produced using multi-date, multi-angle and DSM can be used to produce sealed surface maps from longer timeseries of medium resolution images over large urban areas enabling so the analysis of urban dynamics

    A new kernel method for hyperspectral image feature extraction

    Get PDF
    Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers. However, the increasing spectral dimensions, as well as the information redundancy, make the analysis and interpretation of hyperspectral images a challenge. Feature extraction is a very important step for hyperspectral image processing. Feature extraction methods aim at reducing the dimension of data, while preserving as much information as possible. Particularly, nonlinear feature extraction methods (e.g. kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing, due to their good preservation of high-order structures of the original data. However, conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction, and this leads to poor performances for post-applications. This paper proposes a novel nonlinear feature extraction method for hyperspectral images. Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window), the proposed method explores the use of image segmentation. The approach benefits both noise fraction estimation and information preservation, and enables a significant improvement for classification. Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method. Compared to conventional KMNF, the improvements of the method on two hyperspectral image classification are 8 and 11%. This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required

    Mapping Chestnut Stands Using Bi-Temporal VHR Data

    Get PDF
    This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover different phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHR WorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    Fuzzy-based Propagation of Prior Knowledge to Improve Large-Scale Image Analysis Pipelines

    Get PDF
    Many automatically analyzable scientific questions are well-posed and offer a variety of information about the expected outcome a priori. Although often being neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and the direct information about the ambiguity inherent in the extracted data. We present a new concept for the estimation and propagation of uncertainty involved in image analysis operators. This allows using simple processing operators that are suitable for analyzing large-scale 3D+t microscopy images without compromising the result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it enhance the result quality of various processing operators. All presented concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. Furthermore, the functionality of the proposed approach is validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. Especially, the automated analysis of terabyte-scale microscopy data will benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout. The generality of the concept, however, makes it also applicable to practically any other field with processing strategies that are arranged as linear pipelines.Comment: 39 pages, 12 figure
    corecore