995 research outputs found

    Image filtering by reduced kernels exploiting kernel structure and focal-plane averaging

    Get PDF
    Incorporating multi-resolution capabilities into imagers renders additional power saving mechanisms in the subsequent image processing. In this paper, we show how, by exploiting a certain mask structure, 3 × 3 kernels can be reduced to 2 × 2 kernels if charge redistribution is provided at the focal plane of the imaging device. More precisely, by averaging and shifting a half-resolution pixel grid, we will have a pre-processed image, subsampled by a factor of 2 on each dimension, that can be filtered with a mask of a reduced size. Very useful image filtering kernels, like a 3 × 3 Gaussian kernel for image smoothing, or the well-known Sobel operators, fall into this category of reducible kernels. Operating onto the pre-processed image with one of these reduced kernels represents a smaller number of operations per pixel than realizing all the multiply-accumulate operations needed to apply a 3 × 3 kernel. Memory accesses are reduced in the same fraction. Concerning the difficulties of providing this pre-processed image representation, we propose a methodology for obtaining it at a very low power cost. It requires the implementation of user definable image subdivision and subsampling at the focal plane. Experimental results are given, obtained from measurements on a CMOS imager prototype chip incorporating these multi-resolution capabilities.Ministerio de Ciencia e Innovación TEC2009-11812Office of Naval Research N00014111031

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Focal-Plane Scale Space Generation with a 6T Pixel Architecture

    Get PDF
    Aiming at designing a CMOS image sensor that combines high fill factor and focal-plane implementation of instrumental image processing steps, we propose a simple modification in a standard pixel architecture in order to allow for charge redistribution among neighboring pixels. As a result, averaging operations may be performed at the focal plane, and image smoothing based on Gaussian filtering may thus be implemented. By averaging neighboring pixel values, it is also possible to generate intermediate data structures that are required for the computation of Haar-like features. To show that the proposed hardware is suitable for computer vision applications, we present a systemlevel comparison in which the scale-invariant feature transform (SIFT) algorithm is executed twice: first, on data obtained with a classical Gaussian filtering approach, and then on data generated from the proposed approach. Preliminary schematic and extracted layout pixel simulations are also presented.Brazilian Research Agencies CNPq 204382/2014-9, CNPq 309148/2013-8, CNPq 479437/2013-0, FAPERJ E-26/201.514/2014, FAPERJ E-26/110.099/2013Ministerio de Economía y Competitividad TEC2012-38921- C02Junta de Andalucía TIC 2338-2013Office of Naval Research USA N00014141035

    Scaling Multidimensional Inference for Big Structured Data

    Get PDF
    In information technology, big data is a collection of data sets so large and complex that it becomes difficult to process using traditional data processing applications [151]. In a world of increasing sensor modalities, cheaper storage, and more data oriented questions, we are quickly passing the limits of tractable computations using traditional statistical analysis methods. Methods which often show great results on simple data have difficulties processing complicated multidimensional data. Accuracy alone can no longer justify unwarranted memory use and computational complexity. Improving the scaling properties of these methods for multidimensional data is the only way to make these methods relevant. In this work we explore methods for improving the scaling properties of parametric and nonparametric models. Namely, we focus on the structure of the data to lower the complexity of a specific family of problems. The two types of structures considered in this work are distributive optimization with separable constraints (Chapters 2-3), and scaling Gaussian processes for multidimensional lattice input (Chapters 4-5). By improving the scaling of these methods, we can expand their use to a wide range of applications which were previously intractable open the door to new research questions

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented

    Accurate depth from defocus estimation with video-rate implementation

    Get PDF
    The science of measuring depth from images at video rate using „defocus‟ has been investigated. The method required two differently focussed images acquired from a single view point using a single camera. The relative blur between the images was used to determine the in-focus axial points of each pixel and hence depth. The depth estimation algorithm researched by Watanabe and Nayar was employed to recover the depth estimates, but the broadband filters, referred as the Rational filters were designed using a new procedure: the Two Step Polynomial Approach. The filters designed by the new model were largely insensitive to object texture and were shown to model the blur more precisely than the previous method. Experiments with real planar images demonstrated a maximum RMS depth error of 1.18% for the proposed filters, compared to 1.54% for the previous design. The researched software program required five 2D convolutions to be processed in parallel and these convolutions were effectively implemented on a FPGA using a two channel, five stage pipelined architecture, however the precision of the filter coefficients and the variables had to be limited within the processor. The number of multipliers required for each convolution was reduced from 49 to 10 (79.5% reduction) using a Triangular design procedure. Experimental results suggested that the pipelined processor provided depth estimates comparable in accuracy to the full precision Matlab‟s output, and generated depth maps of size 400 x 400 pixels in 13.06msec, that is faster than the video rate. The defocused images (near and far-focused) were optically registered for magnification using Telecentric optics. A frequency domain approach based on phase correlation was employed to measure the radial shifts due to magnification and also to optimally position the external aperture. The telecentric optics ensured pixel to pixel registration between the defocused images was correct and provided more accurate depth estimates

    Divergence Model for Measurement of Goos-Hanchen Shift

    Get PDF
    In this effort a new measurement technique for the lateral Goos-Hanchen shift is developed, analyzed, and demonstrated. The new technique uses classical image formation methods fused with modern detection and analysis methods to achieve higher levels of sensitivity than obtained with prior practice. Central to the effort is a new mathematical model of the dispersion seen at a step shadow when the Goos-Hanchen effect occurs near critical angle for total internal reflection. Image processing techniques are applied to measure the intensity distribution transfer function of a new divergence model of the Goos-Hanchen phenomena providing verification of the model. This effort includes mathematical modeling techniques, analytical derivations of governing equations, numerical verification of models and sensitivities, optical design of apparatus, image processin

    Pixels for focal-plane scale space generation and for high dynamic range imaging

    Get PDF
    Focal-plane processing allows for parallel processing throughout the entire pixel matrix, which can help increasing the speed of vision systems. The fabrication of circuits inside the pixel matrix increases the pixel pitch and reduces the fill factor, which leads to reduced image quality. To take advantage of the focal-plane processing capabilities and minimize image quality reduction, we first consider the inclusion of only two extra transistors in the pixel, allowing for scale space generation at the focal plane. We assess the conditions in which the proposed circuitry is advantageous. We perform a time and energy analysis of this approach in comparison to a digital solution. Considering that a SAR ADC per column is used and the clock frequency is equal to 5.6 MHz, the proposed analysis show that the focal-plane approach is 26 times faster if the digital solution uses 10 processing elements, and 49 times more energy-efficient. Another way of taking advantage of the focal-plane signal processing capability is by using focal-plane processing for increasing image quality itself, such as in the case of high dynamic range imaging pixels. This work also presents the design and study of a pixel that captures high dynamic range images by sensing the matrix average luminance, and then adjusting the integration time of each pixel according to the global average and to the local value of the pixel. This pixel was implemented considering small structural variations, such as different photodiode sizes for global average luminance measurement. Schematic and post-layout simulations were performed with the implemented pixel using an input image of 76 dB, presenting results with details in both dark and bright image areas.O processamento no plano focal de imageadores permite que a imagem capturada seja processada em paralelo por toda a matrix de pixels, característica que pode aumentar a velocidade de sistemas de visão. Ao fabricar circuitos dentro da matrix de pixels, o tamanho do pixel aumenta e a razão entre área fotossensível e a área total do pixel diminui, reduzindo a qualidade da imagem. Para utilizar as vantagens do processamento no plano focal e minimizar a redução da qualidade da imagem, a primeira parte da tese propõe a inclusão de dois transistores no pixel, o que permite que o espaço de escalas da imagem capturada seja gerado. Nós então avaliamos em quais condições o circuito proposto é vantajoso. Nós analisamos o tempo de processamento e o consumo de energia dessa proposta em comparação com uma solução digital. Utilizando um conversor de aproximações sucessivas com frequência de 5.6 MHz, a análise proposta mostra que a abordagem no plano focal é 26 vezes mais rápida que o circuito digital com 10 elementos de processamento, e consome 49 vezes menos energia. Outra maneira de utilizar processamento no plano focal consiste em aplicá-lo para melhorar a qualidade da imagem, como na captura de imagens em alta faixa dinâmica. Esta tese também apresenta o estudo e projeto de um pixel que realiza a captura de imagens em alta faixa dinâmica através do ajuste do tempo de integração de cada pixel utilizando a iluminação média e o valor do próprio pixel. Esse pixel foi projetado considerando pequenas variações estruturais, como diferentes tamanhos do fotodiodo que realiza a captura do valor de iluminação médio. Simulações de esquemático e pós-layout foram realizadas com o pixel projetado utilizando uma imagem com faixa dinâmica de 76 dB, apresentando resultados com detalhes tanto na parte clara como na parte escura da imagem
    corecore