61,446 research outputs found

    Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution

    Get PDF
    We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning

    Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging

    Full text link
    Left-invariant PDE-evolutions on the roto-translation group SE(2)SE(2) (and their resolvent equations) have been widely studied in the fields of cortical modeling and image analysis. They include hypo-elliptic diffusion (for contour enhancement) proposed by Citti & Sarti, and Petitot, and they include the direction process (for contour completion) proposed by Mumford. This paper presents a thorough study and comparison of the many numerical approaches, which, remarkably, is missing in the literature. Existing numerical approaches can be classified into 3 categories: Finite difference methods, Fourier based methods (equivalent to SE(2)SE(2)-Fourier methods), and stochastic methods (Monte Carlo simulations). There are also 3 types of exact solutions to the PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in previous works by Duits and van Almsick in 2005. Here we provide an overview of these 3 types of exact solutions and explain how they relate to each of the 3 numerical approaches. We compute relative errors of all numerical approaches to the exact solutions, and the Fourier based methods show us the best performance with smallest relative errors. We also provide an improvement of Mathematica algorithms for evaluating Mathieu-functions, crucial in implementations of the exact solutions. Furthermore, we include an asymptotical analysis of the singularities within the kernels and we propose a probabilistic extension of underlying stochastic processes that overcomes the singular behavior in the origin of time-integrated kernels. Finally, we show retinal imaging applications of combining left-invariant PDE-evolutions with invertible orientation scores.Comment: A final and corrected version of the manuscript is Published in Numerical Mathematics: Theory, Methods and Applications (NM-TMA), vol. (9), p.1-50, 201

    Breast Cancer: Modelling and Detection

    Get PDF
    This paper reviews a number of the mathematical models used in cancer modelling and then chooses a specific cancer, breast carcinoma, to illustrate how the modelling can be used in aiding detection. We then discuss mathematical models that underpin mammographic image analysis, which complements models of tumour growth and facilitates diagnosis and treatment of cancer. Mammographic images are notoriously difficult to interpret, and we give an overview of the primary image enhancement technologies that have been introduced, before focusing on a more detailed description of some of our own recent work on the use of physics-based modelling in mammography. This theoretical approach to image analysis yields a wealth of information that could be incorporated into the mathematical models, and we conclude by describing how current mathematical models might be enhanced by use of this information, and how these models in turn will help to meet some of the major challenges in cancer detection

    Optimized Anisotropic Rotational Invariant Diffusion Scheme on Cone-Beam CT

    Get PDF
    Cone-beam computed tomography (CBCT) is an important image modality for dental surgery planning, with high resolution images at a relative low radiation dose. In these scans the mandibular canal is hardly visible, this is a problem for implant surgery planning. We use anisotropic diffusion filtering to remove noise and enhance the mandibular canal in CBCT scans. For the diffusion tensor we use hybrid diffusion with a continuous switch (HDCS), suitable for filtering both tubular as planar image structures. We focus in this paper on the diffusion discretization schemes. The standard scheme shows good isotropic filtering behavior but is not rotational invariant, the diffusion scheme of Weickert is rotational invariant but suffers from checkerboard artifacts. We introduce a new scheme, in which we numerically optimize the image derivatives. This scheme is rotational invariant and shows good isotropic filtering properties on both synthetic as real CBCT data
    • ā€¦
    corecore