38,449 research outputs found

    A Compressive Multi-Mode Superresolution Display

    Get PDF
    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image.Comment: Technical repor

    Optical Spectral Observations of a Flickering White-Light Kernel in a C1 Solar Flare

    Get PDF
    We analyze optical spectra of a two-ribbon, long duration C1.1 flare that occurred on 18 Aug 2011 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 \AA\ to 4550 \AA\ acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, ≤\le0''.5 (101510^{15} cm2^2) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor (GBM) on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a "blue continuum bump" in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.Comment: 54 pages, 13 figures, accepted for publication in the Astrophysical Journa

    The color dependent morphology of the post-AGB star HD161796

    Get PDF
    Context. Many protoplanetary nebulae show strong asymmetries in their surrounding shell, pointing to asymmetries during the mass loss phase. Questions concerning the origin and the onset of deviations from spherical symmetry are important for our understanding of the evolution of these objects. Here we focus on the circumstellar shell of the post-AGB star HD 161796. Aims. We aim at detecting signatures of an aspherical outflow, as well as to derive the properties of it. Methods. We use the imaging polarimeter ExPo (the extreme polarimeter), a visitor instrument at the William Herschel Telescope, to accurately image the dust shell surrounding HD 161796 in various wavelength filters. Imaging polarimetry allows us to separate the faint, polarized, light from circumstellar material from the bright, unpolarized, light from the central star. Results. The shell around HD 161796 is highly aspherical. A clear signature of an equatorial density enhancement can be seen. This structure is optically thick at short wavelengths and changes its appearance to optically thin at longer wavelengths. In the classification of the two different appearances of planetary nebulae from HST images it changes from being classified as DUPLEX at short wavelengths to SOLE at longer wavelengths. This strengthens the interpretation that these two appearances are manifestations of the same physical structure. Furthermore, we find that the central star is hotter than often assumed and the relatively high observed reddening is due to circumstellar rather than interstellar extinction.Comment: Accepted for publication in A&

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure

    Dissecting bombs and bursts: non-LTE inversions of low-atmosphere reconnection in SST and IRIS observations

    Full text link
    Ellerman bombs and UV bursts are transient brightenings that are ubiquitously observed in the lower atmospheres of active and emerging flux regions. Here we present inversion results of SST/CRISP and CHROMIS, as well as IRIS data of such transient events. Combining information from the Mg II h & k, Si IV and Ca II 8542A and Ca II H & K lines, we aim to characterise their temperature and velocity stratification, as well as their magnetic field configuration. We find average temperature enhancements of a few thousand kelvin close to the classical temperature minimum, but localised peak temperatures of up to 10,000-15,000 K from Ca II inversions. Including Mg II generally dampens these temperature enhancements to below 8000 K, while Si IV requires temperatures in excess of 10,000 K at low heights, but may also be reproduced with secondary temperature enhancements of 35,000-60,000 K higher up. However, reproducing Si IV comes at the expense of overestimating the Mg II emission. The line-of-sight velocity maps show clear bi-directional jet signatures and strong correlation with substructure in the intensity images, with slightly larger velocities towards the observer than away. The magnetic field parameters show an enhancement of the horizontal field co-located with the brightenings at similar heights as the temperature increase. We are thus able to largely reproduce the observational properties of Ellerman bombs with UV burst signature with temperature stratifications peaking close to the classical temperature minimum. Correctly modelling the Si IV emission in agreement with all other diagnostics is, however, an outstanding issue. Accounting for resolution differences, fitting localised temperature enhancements and/or performing spatially-coupled inversions is likely necessary to obtain better agreement between all considered diagnostics.Comment: Accepted for publication in Astronomy & Astrophysics. 24 pages, 17 figure

    Chromospheric Evaporation in an X1.0 Flare on 2014 March 29 Observed with IRIS and EIS

    Full text link
    Chromospheric evaporation refers to dynamic mass motions in flare loops as a result of rapid energy deposition in the chromosphere. These have been observed as blueshifts in X-ray and extreme-ultraviolet (EUV) spectral lines corresponding to upward motions at a few tens to a few hundreds of km/s. Past spectroscopic observations have also revealed a dominant stationary component, in addition to the blueshifted component, in emission lines formed at high temperatures (~10 MK). This is contradictory to evaporation models predicting predominant blueshifts in hot lines. The recently launched Interface Region Imaging Spectrograph (IRIS) provides high resolution imaging and spectroscopic observations that focus on the chromosphere and transition region in the UV passband. Using the new IRIS observations, combined with coordinated observations from the EUV Imaging Spectrometer, we study the chromospheric evaporation process from the upper chromosphere to corona during an X1.0 flare on 2014 March 29. We find evident evaporation signatures, characterized by Doppler shifts and line broadening, at two flare ribbons separating from each other, suggesting that chromospheric evaporation takes place in successively formed flaring loops throughout the flare. More importantly, we detect dominant blueshifts in the high temperature Fe XXI line (~10 MK), in agreement with theoretical predictions. We also find that, in this flare, gentle evaporation occurs at some locations in the rise phase of the flare, while explosive evaporation is detected at some other locations near the peak of the flare. There is a conversion from gentle to explosive evaporation as the flare evolves.Comment: ApJ in pres

    EyeRIS: A General-Purpose System for Eye Movement Contingent Display Control

    Full text link
    In experimental studies of visual performance, the need often emerges to modify the stimulus according to the eye movements perfonncd by the subject. The methodology of Eye Movement-Contingent Display (EMCD) enables accurate control of the position and motion of the stimulus on the retina. EMCD procedures have been used successfully in many areas of vision science, including studies of visual attention, eye movements, and physiological characterization of neuronal response properties. Unfortunately, the difficulty of real-time programming and the unavailability of flexible and economical systems that can be easily adapted to the diversity of experimental needs and laboratory setups have prevented the widespread use of EMCD control. This paper describes EyeRIS, a general-purpose system for performing EMCD experiments on a Windows computer. Based on a digital signal processor with analog and digital interfaces, this integrated hardware and software system is responsible for sampling and processing oculomotor signals and subject responses and modifying the stimulus displayed on a CRT according to the gaze-contingent procedure specified by the experimenter. EyeRIS is designed to update the stimulus within a delay of 10 ms. To thoroughly evaluate EyeRIS' perforltlancc, this study (a) examines the response of the system in a number of EMCD procedures and computational benchmarking tests, (b) compares the accuracy of implementation of one particular EMCD procedure, retinal stabilization, to that produced by a standard tool used for this task, and (c) examines EyeRIS' performance in one of the many EMCD procedures that cannot be executed by means of any other currently available device.National Institute of Health (EY15732-01

    Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST/STIS Multi-Roll Coronagraphy

    Get PDF
    Spatially resolved scattered-light images of circumstellar (CS) debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, systemic architectures, and forces perturbing starlight-scattering CS material. Using HST/STIS optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in ten CS debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances > 5 AU for the nearest stars, and simultaneously resolve disk substructures well beyond, corresponding to the giant planet and Kuiper belt regions in our Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. We present new results inclusive of fainter disks such as HD92945 confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures, significant asymmetries and complex morphologies include: HD181327 with a posited spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested interacting with the local ISM; HD15115 & HD32297, discussed also in the context of environmental interactions. These disks, and HD15745, suggest debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, out-of-plane surface brightness asymmetries at > 5 AU may implicate one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System.Comment: 109 pages, 43 figures, accepted for publication in the Astronomical Journa

    Penumbral micro-jets at high spatial and temporal resolution

    Full text link
    Sunspot observations in chromospheric spectral lines have revealed the existence of short-lived linear bright transients, commonly referred to as penumbral micro-jets (PMJs). Details on the origin and physical nature of PMJs are to large extend still unkown. We aim to characterize the dynamical nature of PMJs to provide guidance for future modelling efforts. We analyze high spatial (0.1 arcsec) and temporal resolution (1 s) Ca II H filtergram (0.1 nm bandwidth) observations of a sunspot obtained on two consecutive days with the Swedish 1-m Solar Telescope. We find that PMJs appear to be the rapid brightening of an already existing (faint) fibril. The rapid brightening is the fast increase (typically less than 10 s) in intensity over significant length (several 100s of km) of the existing fibril. For most PMJs, we cannot identify a clear root or source from where the brightening appears to originate. After the fast onset, about half of the PMJs have a top that is moving with an apparent velocity between 5 and 14 km/s, most of them upwards. For the other PMJs, there is no significant motion of the top. For about a third of the PMJs we observe a splitting into two parallel and co-evolving linear features during the later phases of the lifetime of the PMJ. We conclude that mass flows can play only limited role in the onset phase of PMJs and that it is more likely that we see the effect of a fast heating front.Comment: Accepted for publication in Astronomy & Astrophysics. Movies are available at http://folk.uio.no/rouppe/pmj_highcadence

    Constructing a WISE High Resolution Galaxy Atlas

    Get PDF
    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 {\mu}m, 4.6 {\mu}m, 12 {\mu}m and 22 {\mu}m. We have begun a dedicated WISE High Resolution Galaxy Atlas (WHRGA) project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalogue. Here we summarize the deconvolution technique used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE super-resolution image processing to that of Spitzer, GALEX and ground-based imaging. The is the first paper in a two part series; results for a much larger sample of nearby galaxies is presented in the second paper.Comment: Published in the AJ (2012, AJ, 144, 68
    • …
    corecore