5,847 research outputs found

    Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology

    Get PDF
    The incidence of thyroid nodule is very high and generally increases with the age. Thyroid nodule may presage the emergence of thyroid cancer. The thyroid nodule can be completely cured if detected early. Fine needle aspiration cytology is a recognized early diagnosis method of thyroid nodule. There are still some limitations in the fine needle aspiration cytology, and the ultrasound diagnosis of thyroid nodule has become the first choice for auxiliary examination of thyroid nodular disease. If we could combine medical imaging technology and fine needle aspiration cytology, the diagnostic rate of thyroid nodule would be improved significantly. The properties of ultrasound will degrade the image quality, which makes it difficult to recognize the edges for physicians. Image segmentation technique based on graph theory has become a research hotspot at present. Normalized cut (Ncut) is a representative one, which is suitable for segmentation of feature parts of medical image. However, how to solve the normalized cut has become a problem, which needs large memory capacity and heavy calculation of weight matrix. It always generates over segmentation or less segmentation which leads to inaccurate in the segmentation. The speckle noise in B ultrasound image of thyroid tumor makes the quality of the image deteriorate. In the light of this characteristic, we combine the anisotropic diffusion model with the normalized cut in this paper. After the enhancement of anisotropic diffusion model, it removes the noise in the B ultrasound image while preserves the important edges and local details. This reduces the amount of computation in constructing the weight matrix of the improved normalized cut and improves the accuracy of the final segmentation results. The feasibility of the method is proved by the experimental results.Comment: 15pages,13figure

    Mini Kirsch Edge Detection and Its Sharpening Effect

    Get PDF
    In computer vision, edge detection is a crucial step in identifying the objects’ boundaries in an image. The existing edge detection methods function in either spatial domain or frequency domain, fail to outline the high continuity boundaries of the objects. In this work, we modified four-directional mini Kirsch edge detection kernels which enable full directional edge detection. We also introduced the novel involvement of the proposed method in image sharpening by adding the resulting edge map onto the original input image to enhance the edge details in the image. From the edge detection performance tests, our proposed method acquired the highest true edge pixels and true non-edge pixels detection, yielding the highest accuracy among all the comparing methods. Moreover, the sharpening effect offered by our proposed framework could achieve a more favorable visual appearance with a competitive score of peak signal-to-noise ratio and structural similarity index value compared to the most widely used unsharp masking and Laplacian of Gaussian sharpening methods.  The edges of the sharpened image are further enhanced could potentially contribute to better boundary tracking and higher segmentation accuracy

    Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    Get PDF
    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1D counterpart, we relate the real and imaginary components of these complex wavelets using a multi-dimensional extension of the HT--the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient FFT-based filterbank algorithm for implementing the associated complex wavelet transform.Comment: 36 pages, 8 figure

    Image Inpainting and Enhancement using Fractional Order Variational Model

    Get PDF
    The intention of image inpainting is to complete or fill the corrupted or missing zones of an image by considering the knowledge from the source region. A novel fractional order variational image inpainting model in reference to Caputo definition is introduced in this article. First, the fractional differential, and its numerical methods are represented according to Caputo definition. Then, a fractional differential mask is represented in 8-directions. The complex diffusivity function is also defined to preserve the edges. Finally, the missing regions are filled by using variational model with fractional differentials of 8-directions. The simulation results and analysis display that the new model not only inpaints the missing regions, but also heightens the contrast of the image. The inpainted images have better visual quality than other fractional differential filters
    corecore