2,130 research outputs found

    A principal component analysis-based feature dimensionality reduction scheme for content-based image retrieval system

    Get PDF
    In Content-Based Image Retrieval (CBIR) system, one approach of image representation is to employ combination of low-level visual features cascaded together into a flat vector. While this presents more descriptive information, it however poses serious challenges in terms of high dimensionality and high computational cost of feature extraction algorithms to deployment of CBIR on platforms (devices) with limited computational and storage resources. Hence, in this work a feature dimensionality reduction technique based on Principal Component Analysis (PCA) is implemented. Each image in a database is indexed using 174 dimensional feature vector comprising of 54-dimensional Colour Moments (CM54), 32-bin HSV-histogram (HIST32), 48-dimensional Gabor Wavelet (GW48) and 40-dimensional Wavelet Moments (MW40). The PCA scheme was incorporated into a CBIR system that utilized the entire feature vector space. The k-largest Eigenvalues that yielded a not more than 5% degradation in mean precision were retained for dimensionality reduction. Three image databases (DB10, DB20 and DB100) were used for testing. The result obtained showed that with 80% reduction in feature dimensions, tolerable loss of 3.45, 4.39 and 7.40% in mean precision value were achieved on DB10, DB20 and DB100

    Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos

    Full text link
    Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.Comment: Submitted for publicatio

    Sparse Transfer Learning for Interactive Video Search Reranking

    Get PDF
    Visual reranking is effective to improve the performance of the text-based video search. However, existing reranking algorithms can only achieve limited improvement because of the well-known semantic gap between low level visual features and high level semantic concepts. In this paper, we adopt interactive video search reranking to bridge the semantic gap by introducing user's labeling effort. We propose a novel dimension reduction tool, termed sparse transfer learning (STL), to effectively and efficiently encode user's labeling information. STL is particularly designed for interactive video search reranking. Technically, it a) considers the pair-wise discriminative information to maximally separate labeled query relevant samples from labeled query irrelevant ones, b) achieves a sparse representation for the subspace to encodes user's intention by applying the elastic net penalty, and c) propagates user's labeling information from labeled samples to unlabeled samples by using the data distribution knowledge. We conducted extensive experiments on the TRECVID 2005, 2006 and 2007 benchmark datasets and compared STL with popular dimension reduction algorithms. We report superior performance by using the proposed STL based interactive video search reranking.Comment: 17 page

    Multidimensional Scaling on Multiple Input Distance Matrices

    Full text link
    Multidimensional Scaling (MDS) is a classic technique that seeks vectorial representations for data points, given the pairwise distances between them. However, in recent years, data are usually collected from diverse sources or have multiple heterogeneous representations. How to do multidimensional scaling on multiple input distance matrices is still unsolved to our best knowledge. In this paper, we first define this new task formally. Then, we propose a new algorithm called Multi-View Multidimensional Scaling (MVMDS) by considering each input distance matrix as one view. Our algorithm is able to learn the weights of views (i.e., distance matrices) automatically by exploring the consensus information and complementary nature of views. Experimental results on synthetic as well as real datasets demonstrate the effectiveness of MVMDS. We hope that our work encourages a wider consideration in many domains where MDS is needed

    Tooth Color Detection Using PCA and KNN Classifier Algorithm Based on Color Moment

    Get PDF
    Matching the suitable color for tooth reconstruction is an important step that can make difficulties for the dentists due to the subjective factors  of color selection. Accurate color matching system is mainly result based on images analyzing and processing techniques of recognition system.  This system consist of three parts, which are data collection from digital teeth color images, data preparation for taking color analysis technique and extracting the features, and data classification involve feature selection for reducing the features number of this system. The teeth images which is used in this research are 16 types of teeth that are taken from RSGM UNAIR SURABAYA. Feature extraction is taken by the characteristics of the RGB, HSV and LAB based on the color moment calculation such as mean, standard deviation, skewness, and kurtosis parameter. Due to many formed features from each color space, it is required addition method for reducing the number of features by choosing the essential information like Principal Component Analysis (PCA) method. Combining the PCA feature selection technique to the clasification process using K Nearest Neighbour (KNN) classifier  algorithm can be improved the accuracy performance of this system. On the experiment result, it showed that only using  KNN classifier achieve accuracy percentage up to 97.5 % in learning process and 92.5 % in testing process while combining PCA with KNN classifier can reduce the 36 features to the 26 features which can improve the accuracy percentage up to 98.54 % in learning process and  93.12% in testing process. Adding PCA as the feature selection method can be improved the accuracy performance of this color matching system with little number of features.Â
    • …
    corecore