243 research outputs found

    Design and Analysis of Reversible Data Hiding Using Hybrid Cryptographic and Steganographic approaches for Multiple Images

    Get PDF
    Data concealing is the process of including some helpful information on images. The majority of sensitive applications, such sending authentication data, benefit from data hiding. Reversible data hiding (RDH), also known as invertible or lossless data hiding in the field of signal processing, has been the subject of a lot of study. A piece of data that may be recovered from an image to disclose the original image is inserted into the image during the RDH process to generate a watermarked image. Lossless data hiding is being investigated as a strong and popular way to protect copyright in many sensitive applications, such as law enforcement, medical diagnostics, and remote sensing. Visible and invisible watermarking are the two types of watermarking algorithms. The watermark must be bold and clearly apparent in order to be visible. To be utilized for invisible watermarking, the watermark must be robust and visibly transparent. Reversible data hiding (RDH) creates a marked signal by encoding a piece of data into the host signal. Once the embedded data has been recovered, the original signal may be accurately retrieved. For photos shot in poor illumination, visual quality is more important than a high PSNR number. The DH method increases the contrast of the host picture while maintaining a high PSNR value. Histogram equalization may also be done concurrently by repeating the embedding process in order to relocate the top two bins in the input image's histogram for data embedding. It's critical to assess the images after data concealment to see how much the contrast has increased. Common picture quality assessments include peak signal to noise ratio (PSNR), relative structural similarity (RSS), relative mean brightness error (RMBE), relative entropy error (REE), relative contrast error (RCE), and global contrast factor (GCF). The main objective of this paper is to investigate the various quantitative metrics for evaluating contrast enhancement. The results show that the visual quality may be preserved by including a sufficient number of message bits in the input photographs

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Watermarking on Compressed Image: A New Perspective

    Get PDF

    Improving the Watermarking Technique to Generate Blind Watermark by Using PCA & GLCM Algorithm

    Get PDF
    For making sure that the multimedia information is not accessed or modified by unauthorized users, several digital techniques have been proposed as per the growth of internet applications. However, the most commonly used technique is the watermarking technique. The spatial domain method and frequency domain method are the two broader categorizations of several watermarking techniques proposed over the time. The lower order bits of cover image are improved for embedding a watermark through the spatial domain technique. Minimizing the complexity and including minimum computational values are the major benefits achieved through this technique. However, in the presence of particular security attacks, the robustness of this technique is very high. Further, the techniques that use some invertible transformations such as Discrete Cosine Transform (DCT) are known as the frequency domain transform techniques. The image is hosted by applying Discrete Fourier transforms (DFT) and Discrete Wavelet Transform (DWT) techniques. The coefficient value of these transforms is modified as per the watermark for embedding the watermark within the image easily. Further, on the original image, the inverse transform is applied. The complexity of these techniques is very high. Also, the computational power required here is high. The security attacks are provided with more reverts through these methods. GLCM (Gray Level Co Occurrence Matrix) technique is better approach compare with other approach. In this work, GLCM (Gray Level Co Occurrence Matrix) and PCA (Principal Component Analysis) algorithms are used to improve the work capability of the neural networks by using watermarking techniques. PCA selects the extracted images and GLCM is used to choose the features extracted from the original image. The output of the PCA algorithm is defined by using scaling factor which is further used in the implementation. In this work, the proposed algorithm performs well in terms of PSNR (Peak Signal to Noise Ratio), MSE (Mean Squared Error), and Correlation Coefficient values. The proposed methods values are better from the previous work

    Multi-Tenant Cloud FPGA: A Survey on Security

    Full text link
    With the exponentially increasing demand for performance and scalability in cloud applications and systems, data center architectures evolved to integrate heterogeneous computing fabrics that leverage CPUs, GPUs, and FPGAs. FPGAs differ from traditional processing platforms such as CPUs and GPUs in that they are reconfigurable at run-time, providing increased and customized performance, flexibility, and acceleration. FPGAs can perform large-scale search optimization, acceleration, and signal processing tasks compared with power, latency, and processing speed. Many public cloud provider giants, including Amazon, Huawei, Microsoft, Alibaba, etc., have already started integrating FPGA-based cloud acceleration services. While FPGAs in cloud applications enable customized acceleration with low power consumption, it also incurs new security challenges that still need to be reviewed. Allowing cloud users to reconfigure the hardware design after deployment could open the backdoors for malicious attackers, potentially putting the cloud platform at risk. Considering security risks, public cloud providers still don't offer multi-tenant FPGA services. This paper analyzes the security concerns of multi-tenant cloud FPGAs, gives a thorough description of the security problems associated with them, and discusses upcoming future challenges in this field of study

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Comparative Study and Design Light Weight Data Security System for Secure Data Transmission in Internet of Things

    Get PDF
    Internet of things is shortened as IoT. Today IoT is a key and abrogating subject of the specialized and social importance. Results of buyers, things and vehicles, industry based and fundamental segments, sensors, and other everyday items are converged with network of internet and the solid information abilities which guarantee to change the sort in which we work and live. The proposed work demonstrates the implementation of symmetric key lightweight algorithm for secured data transmission of images and text using image encryption system as well as reversible data hiding system. In this paper, implemented symmetric key cryptography for various formats of images, as well as real time image acquisition system has been designed in the form of graphical user interface. Reversible data hiding system has also been designed for secure data transmission system

    DIGITAL WATERMARKING FOR COMPACT DISCS AND THEIR EFFECT ON THE ERROR CORRECTION SYSTEM

    Get PDF
    A new technique, based on current compact disc technology, to image the transparent surface of a compact disc, or additionally the reflective information layer, has been designed, implemented and evaluated. This technique (image capture technique) has been tested and successfully applied to the detection of mechanically introduced compact disc watermarks and biometrical information with a resolution of 1.6um x l4um. Software has been written which, when used with the image capture technique, recognises a compact disc based on its error distribution. The software detects digital watermarks which cause either laser signal distortions or decoding error events. Watermarks serve as secure media identifiers. The complete channel coding of a Compact Disc Audio system including EFM modulation, error-correction and interleaving have been implemented in software. The performance of the error correction system of the compact disc has been assessed using this simulation model. An embedded data channel holding watermark data has been investigated. The covert channel is implemented by means of the error-correction ability of the Compact Disc system and was realised by aforementioned techniques like engraving the reflective layer or the polysubstrate layer. Computer simulations show that watermarking schemes, composed of regularly distributed single errors, impose a minimum effect on the error correction system. Error rates increase by a factor of ten if regular single-symbol errors per frame are introduced - all other patterns further increase the overall error rates. Results show that background signal noise has to be reduced by a factor of 60% to account for the additional burden of this optimal watermark pattern. Two decoding strategies, usually employed in modern CD decoders, have been examined. Simulations take emulated bursty background noise as it appears in user-handled discs into account. Variations in output error rates, depending on the decoder and the type of background noise became apparant. At low error rates {r < 0.003) the output symbol error rate for a bursty background differs by 20% depending on the decoder. Differences between a typical burst error distribution caused by user-handling and a non-burst error distribution has been found to be approximately 1% with the higher performing decoder. Simulation results show that the drop of the error-correction rates due to the presence of a watermark pattern quantitatively depends on the characteristic type of the background noise. A four times smaller change to the overall error rate was observed when adding a regular watermark pattern to a characteristic background noise, as caused by user-handling, compared to a non-bursty background

    Numerical Simulation and Design of Copy Move Image Forgery Detection Using ORB and K Means Algorithm

    Get PDF
    Copy-move is a common technique for tampering with images in the digital realm. Therefore, image security authentication is of critical importance in our society. So copy move forgery detection (CMFD) is activated in order to identify the forged portion of a photograph. A combination of the Scaled ORB and the k-means++ algorithm is used to identify this object. The first step is to identify the space on a pyramid scale, which is critical for the next step. A region's defining feature is critical to its detection. Because of this, the ORB descriptor plays an important role. Extracting FAST key points and ORB features from each scale space. The coordinates of the FAST key points have been reversed in relation to the original image. The ORB descriptors are now subjected to the k-means++ algorithm. Hammering distance is used to match the clustered features every two key points. Then, the forged key points are discovered. This information is used to draw two circles on the forged and original regions. Moment must be calculated if the forged region is rotational invariant. Geometric transformation (scaling and rotation) is possible in this method. For images that have been rotated and smoothed, this work demonstrates a method for detecting the forged region. The running time of the proposed method is less than that of the previous method
    • …
    corecore