57 research outputs found

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Speckle noise removal convex method using higher-order curvature variation

    Get PDF

    Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients

    Get PDF
    We address the denoising of images contaminated with multiplicative noise, e.g. speckle noise. Classical ways to solve such problems are filtering, statistical (Bayesian) methods, variational methods, and methods that convert the multiplicative noise into additive noise (using a logarithmic function), shrinkage of the coefficients of the log-image data in a wavelet basis or in a frame, and transform back the result using an exponential function. We propose a method composed of several stages: we use the log-image data and apply a reasonable under-optimal hard-thresholding on its curvelet transform; then we apply a variational method where we minimize a specialized criterion composed of an â„“1\ell^1 data-fitting to the thresholded coefficients and a Total Variation regularization (TV) term in the image domain; the restored image is an exponential of the obtained minimizer, weighted in a way that the mean of the original image is preserved. Our restored images combine the advantages of shrinkage and variational methods and avoid their main drawbacks. For the minimization stage, we propose a properly adapted fast minimization scheme based on Douglas-Rachford splitting. The existence of a minimizer of our specialized criterion being proven, we demonstrate the convergence of the minimization scheme. The obtained numerical results outperform the main alternative methods

    Recent Techniques for Regularization in Partial Differential Equations and Imaging

    Get PDF
    abstract: Inverse problems model real world phenomena from data, where the data are often noisy and models contain errors. This leads to instabilities, multiple solution vectors and thus ill-posedness. To solve ill-posed inverse problems, regularization is typically used as a penalty function to induce stability and allow for the incorporation of a priori information about the desired solution. In this thesis, high order regularization techniques are developed for image and function reconstruction from noisy or misleading data. Specifically the incorporation of the Polynomial Annihilation operator allows for the accurate exploitation of the sparse representation of each function in the edge domain. This dissertation tackles three main problems through the development of novel reconstruction techniques: (i) reconstructing one and two dimensional functions from multiple measurement vectors using variance based joint sparsity when a subset of the measurements contain false and/or misleading information, (ii) approximating discontinuous solutions to hyperbolic partial differential equations by enhancing typical solvers with l1 regularization, and (iii) reducing model assumptions in synthetic aperture radar image formation, specifically for the purpose of speckle reduction and phase error correction. While the common thread tying these problems together is the use of high order regularization, the defining characteristics of each of these problems create unique challenges. Fast and robust numerical algorithms are also developed so that these problems can be solved efficiently without requiring fine tuning of parameters. Indeed, the numerical experiments presented in this dissertation strongly suggest that the new methodology provides more accurate and robust solutions to a variety of ill-posed inverse problems.Dissertation/ThesisDoctoral Dissertation Mathematics 201

    Wavelet Operators and Multiplicative Observation Models -Application to SAR Image Time Series Analysis

    Get PDF
    International audienceThis paper first provides statistical properties of wavelet operators when the observation model can be seen as the product of a deterministic piece-wise regular function (signal) and a stationary random field (noise). This multiplicative observation model is analyzed in two standard frameworks by considering either (1) a direct wavelet transform of the model or (2) a log-transform of the model prior to wavelet decomposition. The paper shows that, in Framework (1), wavelet coefficients of the time series are affected by intricate correlation structures which blur signal singularities. Framework (2) is shown to be associated with a multiplicative (or geometric) wavelet transform and the multiplicative interactions between wavelets and the model highlight both sparsity of signal changes near singularities (dominant coefficients) and decorre-lation of speckle wavelet coefficients. The paper then derives that, for time series of synthetic aperture radar data, geometric wavelets represent a more intuitive and relevant framework for the analysis of smooth earth fields observed in the presence of speckle. From this analysis, the paper proposes a fast-and-concise geometric wavelet based method for joint change detection and regularization of synthetic aperture radar image time series. In this method, geometric wavelet details are first computed with respect to the temporal axis in order to derive generalized-ratio change-images from the time series. The changes are then enhanced and speckle is attenuated by using spatial block sigmoid shrinkage. Finally, a regularized time series is reconstructed from the sigmoid shrunken change-images. Some applications highlight relevancy of the method for the analysis of SENTINEL-1A and TerraSAR-X image time series over Chamonix-Mont-Blanc

    An overview of the fundamental approaches that yield several image denoising techniques

    Get PDF
    Digital image is considered as a powerful tool to carry and transmit information between people. Thus, it attracts the attention of large number of researchers, among them those interested in preserving the image features from any factors that may reduce the image quality. One of these factors is the noise which affects the visual aspect of the image and makes others image processing more difficult. Thus far, solving this noise problem remains a challenge for the researchers in this field. A lot of image denoising techniques have been introduced in order to remove the noise by taking care of the image features; in other words, getting the best similarity to the original image from the noisy one. However, the findings are still inconclusive. Beside the enormous amount of researches and studies which adopt several mathematical concepts (statistics, probabilities, modeling, PDEs, wavelet, fuzzy logic, etc.), there is also the scarcity of review papers which carry an important role in the development and progress of research. Thus, this review paper intorduce an overview of the different fundamental approaches that yield the several image-denoising techniques, presented with a new classification. Furthermore, the paper presents the different evaluation tools needed on the comparison between these techniques in order to facilitate the processing of this noise problem, among a great diversity of techniques and concepts

    Fusion of magnetic resonance and ultrasound images for endometriosis detection

    Get PDF
    Endometriosis is a gynecologic disorder that typically affects women in their reproductive age and is associated with chronic pelvic pain and infertility. In the context of pre-operative diagnosis and guided surgery, endometriosis is a typical example of pathology that requires the use of both magnetic resonance (MR) and ultrasound (US) modalities. These modalities are used side by sidebecause they contain complementary information. However, MRI and US images have different spatial resolutions, fields of view and contrasts and are corrupted by different kinds of noise, which results in important challenges related to their analysis by radiologists. The fusion of MR and US images is a way of facilitating the task of medical experts and improve the pre-operative diagnosis and the surgery mapping. The object of this PhD thesis is to propose a new automatic fusion method for MRI and US images. First, we assume that the MR and US images to be fused are aligned, i.e., there is no geometric distortion between these images. We propose a fusion method for MR and US images, which aims at combining the advantages of each modality, i.e., good contrast and signal to noise ratio for the MR image and good spatial resolution for the US image. The proposed algorithm is based on an inverse problem, performing a super-resolution of the MR image and a denoising of the US image. A polynomial function is introduced to modelthe relationships between the gray levels of the MR and US images. However, the proposed fusion method is very sensitive to registration errors. Thus, in a second step, we introduce a joint fusion and registration method for MR and US images. Registration is a complicated task in practical applications. The proposed MR/US image fusion performs jointly super-resolution of the MR image and despeckling of the US image, and is able to automatically account for registration errors. A polynomial function is used to link ultrasound and MR images in the fusion process while an appropriate similarity measure is introduced to handle the registration problem. The proposed registration is based on a non-rigid transformation containing a local elastic B-spline model and a global affine transformation. The fusion and registration operations are performed alternatively simplifying the underlying optimization problem. The interest of the joint fusion and registration is analyzed using synthetic and experimental phantom images
    • …
    corecore