109 research outputs found

    Enhanced Speckle Filters For Sonar Images Using Stationary Wavelets And Hybrid Inter- And Intra Scale Wavelet Coefficient Dependency

    Get PDF
    The quality of Sonar images are often reduced by the presence of speckle noise. The presence of speckle noise leads to incorrect analysis and has to be handled carefully. In this paper, an improved non-parametric statistical wavelet denoising method is presented. The algorithm uses a stationary wavelet transformation to derive the wavelet coefficients, from which edge and non-edge wavelet coefficients are identified. Further to improve the time complexity, only homogenous regions with respect to coefficients of neighbors are considered. This method uses an ant colony classification technique. A hybrid method that exploits both inter-scale and intra-scale dependencies between wavelet coefficients is also proposed. The experimental results show that the proposed method is efficient in terms of reduction in speckle noise and speed and can be efficiently used by various sonar imaging systems

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Wavelet Shrinkage: Unification of Basic Thresholding Functions and Thresholds

    No full text
    International audienceThis work addresses the unification of some basic functions and thresholds used in non-parametric estimation of signals by shrinkage in the wavelet domain. The Soft and Hard thresholding functions are presented as degenerate \emph{smooth sigmoid based shrinkage} functions. The shrinkage achieved by this new family of sigmoid based functions is then shown to be equivalent to a regularisation of wavelet coefficients associated with a class of penalty functions. Some sigmoid based penalty functions are calculated, and their properties are discussed. The unification also concerns the universal and the minimax thresholds used to calibrate standard Soft and Hard thresholding functions: these thresholds pertain to a wide class of thresholds, called the detection thresholds. These thresholds depend on two parameters describing the sparsity degree for the wavelet representation of a signal. It is also shown that the non-degenerate sigmoid shrinkage adjusted with the new detection thresholds is as performant as the best up-to-date parametric and computationally expensive method. This justifies the relevance of sigmoid shrinkage for noise reduction in large databases or large size images

    A Low-Complexity Bayesian Estimation Scheme for Speckle Suppression in Images

    Get PDF
    Speckle noise reduction is a crucial pre-processing step for a successful interpretation of images corrupted by speckle noise, and thus, it has drawn a great deal of attention of researchers in the image processing community. The Bayesian estimation is a powerful signal estimation technique and has been widely used for speckle noise removal in images. In the Bayesian estimation based despeckling techniques, the choice of suitable signal and noise models and the development of a shrinkage function for estimation of the signal are the major concerns from the standpoint of the accuracy and computational complexity of the estimation. In this thesis, a low-complexity wavelet-based Bayesian estimation technique for despeckling of images is developed. The main idea of the proposed technique is in establishing suitable statistical models for the wavelet coefficients of additively decomposed components, namely, the reflectance image and the signal-dependant noise, of the multiplicative degradation model of the noisy image and then in using these two statistical models to develop a shrinkage function with a low-complexity realization for the estimation of the wavelet coefficients of the noise-free image. A study is undertaken to explore the effectiveness of using a two sided exponential distribution as a prior statistical model for the discrete wavelet transform (DWT) coefficients of the signal-dependant noise. This model, along with the Cauchy distribution, which is known to be a good model for the wavelet coefficients of the reflectance image, is used to develop a minimum mean square error (MMSE) Bayesian estimator for the DWT coefficients of the noise-free image. A low-cost realization of the shrinkage function resulting from the MMSE Bayesian estimation is proposed and its efficacy is verified from the standpoint of accuracy as well as computational cost. The performance of the proposed despeckling scheme is evaluated on both synthetic and real SAR images in terms of the commonly used metrics, and the results are compared to that of some other state-of-the-art despeckling schemes available in the literature. The experimental results demonstrate the validity of the proposed despeckling scheme in providing a significant reduction in the speckle noise at a very low computational cost and simultaneously in preserving the image details

    Review on Colour Image Denoising using Wavelet Soft Thresholding Technique

    Get PDF
    In this modern age of communication the image and video is important as Visual information transmitted in the form of digital images, but after the transmission image is often ruined with noise. Therefore the received image needs to be processing before it can be used for further applications. Image denoising implicates the manipulation of the image data to produce a high quality of image without any noise. Most of the work which had done in color scale image is by filter domain approach, but we think that the transform domain approach give great result in the field of color image denoising.. This paper reviews the several types of noise which corrupted the color image and also the existing denoising algorithms based on wavelet threshodling technique. DOI: 10.17762/ijritcc2321-8169.15039

    Wavelet Operators and Multiplicative Observation Models - Application to Change-Enhanced Regularization of SAR Image Time Series

    Get PDF
    This paper first provides statistical properties of wavelet operators when the observation model can be seen as the product of a deterministic piecewise regular function (signal) and a stationary random field (noise). This multiplicative observation model is analyzed in two standard frameworks by considering either (1) a direct wavelet transform of the model or (2) a log-transform of the model prior to wavelet decomposition. The paper shows that, in Framework (1), wavelet coefficients of the time series are affected by intricate correlation structures which affect the signal singularities. Framework (2) is shown to be associated with a multiplicative (or geometric) wavelet transform and the multiplicative interactions between wavelets and the model highlight both sparsity of signal changes near singularities (dominant coefficients) and decorrelation of speckle wavelet coefficients. The paper then derives that, for time series of synthetic aperture radar data, geometric wavelets represent a more intuitive and relevant framework for the analysis of smooth earth fields observed in the presence of speckle. From this analysis, the paper proposes a fast-and-concise geometric wavelet based method for joint change detection and regularization of synthetic aperture radar image time series. In this method, geometric wavelet details are first computed with respect to the temporal axis in order to derive generalized-ratio change-images from the time series. The changes are then enhanced and speckle is attenuated by using spatial bloc sigmoid shrinkage. Finally, a regularized time series is reconstructed from the sigmoid shrunken change-images. An application of this method highlights the relevancy of the method for change detection and regularization of SENTINEL-1A dual-polarimetric image time series over Chamonix-Mont-Blanc test site
    • …
    corecore