25 research outputs found

    Mean Oriented Riesz Features for Micro Expression Classification

    Get PDF
    Micro-expressions are brief and subtle facial expressions that go on and off the face in a fraction of a second. This kind of facial expressions usually occurs in high stake situations and is considered to reflect a human's real intent. There has been some interest in micro-expression analysis, however, a great majority of the methods are based on classically established computer vision methods such as local binary patterns, histogram of gradients and optical flow. A novel methodology for micro-expression recognition using the Riesz pyramid, a multi-scale steerable Hilbert transform is presented. In fact, an image sequence is transformed with this tool, then the image phase variations are extracted and filtered as proxies for motion. Furthermore, the dominant orientation constancy from the Riesz transform is exploited to average the micro-expression sequence into an image pair. Based on that, the Mean Oriented Riesz Feature description is introduced. Finally the performance of our methods are tested in two spontaneous micro-expressions databases and compared to state-of-the-art methods

    A Novel Adaptive LBP-Based Descriptor for Color Image Retrieval

    Get PDF
    In this paper, we present two approaches to extract discriminative features for color image retrieval. The proposed local texture descriptors, based on Radial Mean Local Binary Pattern (RMLBP), are called Color RMCLBP (CRMCLBP) and Prototype Data Model (PDM). RMLBP is a robust to noise descriptor which has been proposed to extract texture features of gray scale images for texture classification. For the first descriptor, the Radial Mean Completed Local Binary Pattern is applied to channels of the color space, independently. Then, the final descriptor is achieved by concatenating the histogram of the CRMCLBP_S/M/C component of each channel. Moreover, to enhance the performance of the proposed method, the Particle Swarm Optimization (PSO) algorithm is used for feature weighting. The second proposed descriptor, PDM, uses the three outputs of CRMCLBP (CRMCLBP_S, CRMCLBP_M, CRMCLBP_C) as discriminative features for each pixel of a color image. Then, a set of representative feature vectors are selected from each image by applying k-means clustering algorithm. This set of selected prototypes are compared by means of a new similarity measure to find the most relevant images. Finally, the weighted versions of PDM is constructed using PSO algorithm. Our proposed methods are tested on Wang, Corel-5k, Corel-10k and Holidays datasets. The results show that our proposed methods makes an admissible tradeoff between speed and retrieval accuracy. The first descriptor enhances the state-of-the-art color texture descriptors in both aspects. The second one is a very fast retrieval algorithm which extracts discriminative features

    Summative Stereoscopic Image Compression using Arithmetic Coding

    Get PDF
    Image compression targets at plummeting the amount of bits required for image representation for save storage space and speed up the transmission over network. The reduction of size helps to store more images in the disk and take less transfer time in the data network. Stereoscopic image refers to a three dimensional (3D) image that is perceived by the human brain as the transformation of two images that is being sent to the left and right human eyes with distinct phases. However, storing of these images takes twice space than a single image and hence the motivation for this novel approach called Summative Stereoscopic Image Compression using Arithmetic Coding (S2ICAC) where the difference and average of these stereo pair images are calculated, quantized in the case of lossy approach and unquantized in the case of lossless approach, and arithmetic coding is applied. The experimental result analysis indicates that the proposed method achieves high compression ratio and high PSNR value. The proposed method is also compared with JPEG 2000 Position Based Coding Scheme(JPEG 2000 PBCS) and Stereoscopic Image Compression using Huffman Coding (SICHC). From the experimental analysis, it is observed that S2ICAC outperforms JPEG 2000 PBCS as well as SICHC

    Color Image Analysis by Quaternion-Type Moments

    No full text
    International audienceIn this paper, by using the quaternion algebra, the conventional complex-type moments (CTMs) for gray-scale images are generalized to color images as quaternion-type moments (QTMs) in a holistic manner. We first provide a general formula of QTMs from which we derive a set of quaternion-valued QTM invariants (QTMIs) to image rotation, scale and translation transformations by eliminating the influence of transformation parameters. An efficient computation algorithm is also proposed so as to reduce computational complexity. The performance of the proposed QTMs and QTMIs are evaluated considering several application frameworks ranging from color image reconstruction, face recognition to image registration. We show they achieve better performance than CTMs and CTM invariants (CTMIs). We also discuss the choice of the unit pure quaternion influence with the help of experiments. appears to be an optimal choice
    corecore