119 research outputs found

    DoPAMINE: Double-sided Masked CNN for Pixel Adaptive Multiplicative Noise Despeckling

    Full text link
    We propose DoPAMINE, a new neural network based multiplicative noise despeckling algorithm. Our algorithm is inspired by Neural AIDE (N-AIDE), which is a recently proposed neural adaptive image denoiser. While the original N-AIDE was designed for the additive noise case, we show that the same framework, i.e., adaptively learning a network for pixel-wise affine denoisers by minimizing an unbiased estimate of MSE, can be applied to the multiplicative noise case as well. Moreover, we derive a double-sided masked CNN architecture which can control the variance of the activation values in each layer and converge fast to high denoising performance during supervised training. In the experimental results, we show our DoPAMINE possesses high adaptivity via fine-tuning the network parameters based on the given noisy image and achieves significantly better despeckling results compared to SAR-DRN, a state-of-the-art CNN-based algorithm.Comment: AAAI 2019 Camera Ready Versio

    Depth Data Denoising in Optical Laser Based Sensors for Metal Sheet Flatness Measurement: A Deep Learning Approach

    Get PDF
    Surface flatness assessment is necessary for quality control of metal sheets manufactured from steel coils by roll leveling and cutting. Mechanical-contact-based flatness sensors are being replaced by modern laser-based optical sensors that deliver accurate and dense reconstruction of metal sheet surfaces for flatness index computation. However, the surface range images captured by these optical sensors are corrupted by very specific kinds of noise due to vibrations caused by mechanical processes like degreasing, cleaning, polishing, shearing, and transporting roll systems. Therefore, high-quality flatness optical measurement systems strongly depend on the quality of image denoising methods applied to extract the true surface height image. This paper presents a deep learning architecture for removing these specific kinds of noise from the range images obtained by a laser based range sensor installed in a rolling and shearing line, in order to allow accurate flatness measurements from the clean range images. The proposed convolutional blind residual denoising network (CBRDNet) is composed of a noise estimation module and a noise removal module implemented by specific adaptation of semantic convolutional neural networks. The CBRDNet is validated on both synthetic and real noisy range image data that exhibit the most critical kinds of noise that arise throughout the metal sheet production process. Real data were obtained from a single laser line triangulation flatness sensor installed in a roll leveling and cut to length line. Computational experiments over both synthetic and real datasets clearly demonstrate that CBRDNet achieves superior performance in comparison to traditional 1D and 2D filtering methods, and state-of-the-art CNN-based denoising techniques. The experimental validation results show a reduction in error than can be up to 15% relative to solutions based on traditional 1D and 2D filtering methods and between 10% and 3% relative to the other deep learning denoising architectures recently reported in the literature.This work was partially supported by by FEDER funds through MINECO project TIN2017-85827-P, and ELKARTEK funded projects ENSOL2 and CODISAVA2 (KK-202000077 and KK-202000044) supported by the Basque Governmen

    Facial image denoising using AutoEncoder and UNET

    Get PDF
    Image denoising is a crucial topic in image processing. Noisy images are generated due to technical and environmental errors. Therefore, it is reasonable to consider image denoising an important topic to study, as it also helps to resolve other image processing issues. However, the challenge is that the classical techniques used are time-consuming and not flexible enough. This article compares the two major neural network architecture which looks promising to resolve this issues. The AutoEncoder and UNET is now the most researched subject in deep learning for image denoising. Multiple model architectures are designed, implement, and evaluated. The dataset is preprocessed and then it is used to train and test the model. It is clearly shown in this paper which model performs the best in this task by comparing both models using the most used parameters to evaluate image quality PSNR and SSIM

    Self-Organized Operational Neural Networks for Severe Image Restoration Problems

    Get PDF
    Discriminative learning based on convolutional neural networks (CNNs) aims to perform image restoration by learning from training examples of noisy-clean image pairs. It has become the go-to methodology for tackling image restoration and has outperformed the traditional non-local class of methods. However, the top-performing networks are generally composed of many convolutional layers and hundreds of neurons, with trainable parameters in excess of several millions. We claim that this is due to the inherent linear nature of convolution-based transformation, which is inadequate for handling severe restoration problems. Recently, a non-linear generalization of CNNs, called the operational neural networks (ONN), has been shown to outperform CNN on AWGN denoising. However, its formulation is burdened by a fixed collection of well-known nonlinear operators and an exhaustive search to find the best possible configuration for a given architecture, whose efficacy is further limited by a fixed output layer operator assignment. In this study, we leverage the Taylor series-based function approximation to propose a self-organizing variant of ONNs, Self-ONNs, for image restoration, which synthesizes novel nodal transformations onthe-fly as part of the learning process, thus eliminating the need for redundant training runs for operator search. In addition, it enables a finer level of operator heterogeneity by diversifying individual connections of the receptive fields and weights. We perform a series of extensive ablation experiments across three severe image restoration tasks. Even when a strict equivalence of learnable parameters is imposed, Self-ONNs surpass CNNs by a considerable margin across all problems, improving the generalization performance by up to 3 dB in terms of PSNR
    corecore