70 research outputs found

    BEMD Based Ultrasound Image Speckle Reduction Technique Using Pixel-Wise Wiener Filtering

    Get PDF
    In this paper, an improved Bidimensional Empirical Mode Decomposition (BEMD) based speckle reduction technique for ultrasound images has been proposed. The noisy image has been decomposed into its Intrinsic Mode Functions (IMFs) and a~residue. The noise component of the low order IMFs is removed with the pixel-wise Wiener filtering. The image is reconstructed with these filtered low order IMFs, high order IMFs and the residue. The performance of the proposed method has been tested on synthetic as well as real ultrasound images having noise components of different variance. The experimental results show that the proposed algorithm performs better than other existing methods for synthetic images as well as real ultrasound images in terms of various image quality matrices

    Introductory Chapter: Signal and Image Denoising

    Get PDF

    BEMDEC: An Adaptive and Robust Methodology for Digital Image Feature Extraction

    Get PDF
    The intriguing study of feature extraction, and edge detection in particular, has, as a result of the increased use of imagery, drawn even more attention not just from the field of computer science but also from a variety of scientific fields. However, various challenges surrounding the formulation of feature extraction operator, particularly of edges, which is capable of satisfying the necessary properties of low probability of error (i.e., failure of marking true edges), accuracy, and consistent response to a single edge, continue to persist. Moreover, it should be pointed out that most of the work in the area of feature extraction has been focused on improving many of the existing approaches rather than devising or adopting new ones. In the image processing subfield, where the needs constantly change, we must equally change the way we think. In this digital world where the use of images, for variety of purposes, continues to increase, researchers, if they are serious about addressing the aforementioned limitations, must be able to think outside the box and step away from the usual in order to overcome these challenges. In this dissertation, we propose an adaptive and robust, yet simple, digital image features detection methodology using bidimensional empirical mode decomposition (BEMD), a sifting process that decomposes a signal into its two-dimensional (2D) bidimensional intrinsic mode functions (BIMFs). The method is further extended to detect corners and curves, and as such, dubbed as BEMDEC, indicating its ability to detect edges, corners and curves. In addition to the application of BEMD, a unique combination of a flexible envelope estimation algorithm, stopping criteria and boundary adjustment made the realization of this multi-feature detector possible. Further application of two morphological operators of binarization and thinning adds to the quality of the operator

    Expand Dimensional of Seismic Data and Random Noise Attenuation Using Low-Rank Estimation

    Get PDF
    Random noise attenuation in seismic data requires employing leading-edge methods to attain reliable denoised data. Efficient noise removal, effective signal preservation and recovery, reasonable processing time with a minimum signal distortion and seismic event deterioration are properties of a desired noise suppression algorithm. There are various noise attenuation methods available that more or less have these properties. We aim to obtain more effective denoised seismic data by assuming 3-D seismic data as a tensor in order three and increasing its dimension to 4-D seismic data by employing continuous wavelet transform (CWT). First, we map 3-D block seismic data to smaller blocks to estimate the low-rank component. The CWT of the tensor is calculated along the third dimension to extract the singular values and their related left/right vectors in the wavelet domain. Afterward, the effective low-rank component is extracted using optimized coefficients for each singular value. Thresholding is applied in the wavelet domain along the third dimension to calculate effective coefficients. Two synthetic and field data examples are considered for performance evaluation of the proposed method, and the results were compared with the competitive random noise suppression methods, such as the tensor optimum shrinkage singular value decomposition, the iterative block tensor singular value thresholding, and the block matching 4-D algorithms. Qualitative and quantitative comparison of the proposed method with other methods indicates that the proposed method efficiently eliminates random noise from seismic data

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, BjΓΆrn Eskofier, Socrates Dokos, Derek Abbot

    An Empirical Mode Decomposition Approach for Multiple Broken Rotor Bars Detection in Three-Phase Induction Motors at No-Load Condition

    Get PDF
    This paper presents an empirical mode decomposition (EMD) approach for multiple broken rotor bars detection in squirrel cage induction motors running at no-load condition, using the resultant magnetic flux density measured by a Hall Effect sensor installed between two stator slots of the electrical machine. Usually, the traditional motor current signature analysis (MCSA) has produced many cases of false indications related to, among other reasons, incorrect speed estimation, operation at low load (low slip) and nonadjacent broken bars. This study has investigated the application of the EMD technique in the signal collected from the Hall sensor, in order to detect broken rotor bars for an induction motor running at very low slip and subjected to adjacent and nonadjacent broken bars. The present approach has been validated from some experiments carried out by a 7.5 kW induction motor fed by a sinusoidal power supply in the laboratory

    A novel facial expression recognition method using bi-dimensional EMD based edge detection

    Get PDF
    Facial expressions provide an important channel of nonverbal communication. Facial recognition techniques detect people’s emotions using their facial expressions and have found applications in technical fields such as Human-Computer-Interaction (HCI) and security monitoring. Technical applications generally require fast processing and decision making. Therefore, it is imperative to develop innovative recognition methods that can detect facial expressions effectively and efficiently. Traditionally, human facial expressions are recognized using standard images. Existing methods of recognition require subjective expertise and high computational costs. This thesis proposes a novel method for facial expression recognition using image edge detection based on Bi-dimensional Empirical Mode Decomposition (BEMD). In this research, a BEMD based edge detection algorithm was developed, a facial expression measurement metric was created, and an intensive database testing was conducted. The success rates of recognition suggest that the proposed method could be a potential alternative to traditional methods for human facial expression recognition with substantially lower computational costs. Furthermore, a possible blind-detection technique was proposed as a result of this research. Initial detection results suggest great potential of the proposed method for blind-detection that may lead to even more efficient techniques for facial expression recognition

    Statistical Properties and Applications of Empirical Mode Decomposition

    Get PDF
    Signal analysis is key to extracting information buried in noise. The decomposition of signal is a data analysis tool for determining the underlying physical components of a processed data set. However, conventional signal decomposition approaches such as wavelet analysis, Wagner-Ville, and various short-time Fourier spectrograms are inadequate to process real world signals. Moreover, most of the given techniques require \emph{a prior} knowledge of the processed signal, to select the proper decomposition basis, which makes them improper for a wide range of practical applications. Empirical Mode Decomposition (EMD) is a non-parametric and adaptive basis driver that is capable of breaking-down non-linear, non-stationary signals into an intrinsic and finite components called Intrinsic Mode Functions (IMF). In addition, EMD approximates a dyadic filter that isolates high frequency components, e.g. noise, in higher index IMFs. Despite of being widely used in different applications, EMD is an ad hoc solution. The adaptive performance of EMD comes at the expense of formulating a theoretical base. Therefore, numerical analysis is usually adopted in literature to interpret the behavior. This dissertation involves investigating statistical properties of EMD and utilizing the outcome to enhance the performance of signal de-noising and spectrum sensing systems. The novel contributions can be broadly summarized in three categories: a statistical analysis of the probability distributions of the IMFs and a suggestion of Generalized Gaussian distribution (GGD) as a best fit distribution; a de-noising scheme based on a null-hypothesis of IMFs utilizing the unique filter behavior of EMD; and a novel noise estimation approach that is used to shift semi-blind spectrum sensing techniques into fully-blind ones based on the first IMF. These contributions are justified statistically and analytically and include comparison with other state of art techniques
    • …
    corecore