1,892 research outputs found

    Non-Uniform Blind Deblurring with a Spatially-Adaptive Sparse Prior

    Full text link
    Typical blur from camera shake often deviates from the standard uniform convolutional script, in part because of problematic rotations which create greater blurring away from some unknown center point. Consequently, successful blind deconvolution requires the estimation of a spatially-varying or non-uniform blur operator. Using ideas from Bayesian inference and convex analysis, this paper derives a non-uniform blind deblurring algorithm with several desirable, yet previously-unexplored attributes. The underlying objective function includes a spatially adaptive penalty which couples the latent sharp image, non-uniform blur operator, and noise level together. This coupling allows the penalty to automatically adjust its shape based on the estimated degree of local blur and image structure such that regions with large blur or few prominent edges are discounted. Remaining regions with modest blur and revealing edges therefore dominate the overall estimation process without explicitly incorporating structure-selection heuristics. The algorithm can be implemented using a majorization-minimization strategy that is virtually parameter free. Detailed theoretical analysis and empirical validation on real images serve to validate the proposed method

    Reflection Separation and Deblurring of Plenoptic Images

    Full text link
    In this paper, we address the problem of reflection removal and deblurring from a single image captured by a plenoptic camera. We develop a two-stage approach to recover the scene depth and high resolution textures of the reflected and transmitted layers. For depth estimation in the presence of reflections, we train a classifier through convolutional neural networks. For recovering high resolution textures, we assume that the scene is composed of planar regions and perform the reconstruction of each layer by using an explicit form of the plenoptic camera point spread function. The proposed framework also recovers the sharp scene texture with different motion blurs applied to each layer. We demonstrate our method on challenging real and synthetic images.Comment: ACCV 201

    DAVANet: Stereo Deblurring with View Aggregation

    Full text link
    Nowadays stereo cameras are more commonly adopted in emerging devices such as dual-lens smartphones and unmanned aerial vehicles. However, they also suffer from blurry images in dynamic scenes which leads to visual discomfort and hampers further image processing. Previous works have succeeded in monocular deblurring, yet there are few studies on deblurring for stereoscopic images. By exploiting the two-view nature of stereo images, we propose a novel stereo image deblurring network with Depth Awareness and View Aggregation, named DAVANet. In our proposed network, 3D scene cues from the depth and varying information from two views are incorporated, which help to remove complex spatially-varying blur in dynamic scenes. Specifically, with our proposed fusion network, we integrate the bidirectional disparities estimation and deblurring into a unified framework. Moreover, we present a large-scale multi-scene dataset for stereo deblurring, containing 20,637 blurry-sharp stereo image pairs from 135 diverse sequences and their corresponding bidirectional disparities. The experimental results on our dataset demonstrate that DAVANet outperforms state-of-the-art methods in terms of accuracy, speed, and model size.Comment: CVPR 2019 (Oral

    Distributed Deblurring of Large Images of Wide Field-Of-View

    Full text link
    Image deblurring is an economic way to reduce certain degradations (blur and noise) in acquired images. Thus, it has become essential tool in high resolution imaging in many applications, e.g., astronomy, microscopy or computational photography. In applications such as astronomy and satellite imaging, the size of acquired images can be extremely large (up to gigapixels) covering wide field-of-view suffering from shift-variant blur. Most of the existing image deblurring techniques are designed and implemented to work efficiently on centralized computing system having multiple processors and a shared memory. Thus, the largest image that can be handle is limited by the size of the physical memory available on the system. In this paper, we propose a distributed nonblind image deblurring algorithm in which several connected processing nodes (with reasonable computational resources) process simultaneously different portions of a large image while maintaining certain coherency among them to finally obtain a single crisp image. Unlike the existing centralized techniques, image deblurring in distributed fashion raises several issues. To tackle these issues, we consider certain approximations that trade-offs between the quality of deblurred image and the computational resources required to achieve it. The experimental results show that our algorithm produces the similar quality of images as the existing centralized techniques while allowing distribution, and thus being cost effective for extremely large images.Comment: 16 pages, 10 figures, submitted to IEEE Trans. on Image Processin

    Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes

    Full text link
    The detection of spatially-varying blur without having any information about the blur type is a challenging task. In this paper, we propose a novel effective approach to address the blur detection problem from a single image without requiring any knowledge about the blur type, level, or camera settings. Our approach computes blur detection maps based on a novel High-frequency multiscale Fusion and Sort Transform (HiFST) of gradient magnitudes. The evaluations of the proposed approach on a diverse set of blurry images with different blur types, levels, and contents demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods qualitatively and quantitatively.Comment: Accepted to CVPR 201

    Modelling the Scene Dependent Imaging in Cameras with a Deep Neural Network

    Full text link
    We present a novel deep learning framework that models the scene dependent image processing inside cameras. Often called as the radiometric calibration, the process of recovering RAW images from processed images (JPEG format in the sRGB color space) is essential for many computer vision tasks that rely on physically accurate radiance values. All previous works rely on the deterministic imaging model where the color transformation stays the same regardless of the scene and thus they can only be applied for images taken under the manual mode. In this paper, we propose a data-driven approach to learn the scene dependent and locally varying image processing inside cameras under the automode. Our method incorporates both the global and the local scene context into pixel-wise features via multi-scale pyramid of learnable histogram layers. The results show that we can model the imaging pipeline of different cameras that operate under the automode accurately in both directions (from RAW to sRGB, from sRGB to RAW) and we show how we can apply our method to improve the performance of image deblurring.Comment: To appear in ICCV 201

    Spatio-Temporal Filter Adaptive Network for Video Deblurring

    Full text link
    Video deblurring is a challenging task due to the spatially variant blur caused by camera shake, object motions, and depth variations, etc. Existing methods usually estimate optical flow in the blurry video to align consecutive frames or approximate blur kernels. However, they tend to generate artifacts or cannot effectively remove blur when the estimated optical flow is not accurate. To overcome the limitation of separate optical flow estimation, we propose a Spatio-Temporal Filter Adaptive Network (STFAN) for the alignment and deblurring in a unified framework. The proposed STFAN takes both blurry and restored images of the previous frame as well as blurry image of the current frame as input, and dynamically generates the spatially adaptive filters for the alignment and deblurring. We then propose the new Filter Adaptive Convolutional (FAC) layer to align the deblurred features of the previous frame with the current frame and remove the spatially variant blur from the features of the current frame. Finally, we develop a reconstruction network which takes the fusion of two transformed features to restore the clear frames. Both quantitative and qualitative evaluation results on the benchmark datasets and real-world videos demonstrate that the proposed algorithm performs favorably against state-of-the-art methods in terms of accuracy, speed as well as model size.Comment: ICCV 201

    Image Restoration Using Joint Statistical Modeling in Space-Transform Domain

    Full text link
    This paper presents a novel strategy for high-fidelity image restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified statistical manner. The main contributions are three-folds. First, from the perspective of image statistics, a joint statistical modeling (JSM) in an adaptive hybrid space-transform domain is established, which offers a powerful mechanism of combining local smoothness and nonlocal self-similarity simultaneously to ensure a more reliable and robust estimation. Second, a new form of minimization functional for solving image inverse problem is formulated using JSM under regularization-based framework. Finally, in order to make JSM tractable and robust, a new Split-Bregman based algorithm is developed to efficiently solve the above severely underdetermined inverse problem associated with theoretical proof of convergence. Extensive experiments on image inpainting, image deblurring and mixed Gaussian plus salt-and-pepper noise removal applications verify the effectiveness of the proposed algorithm.Comment: 14 pages, 18 figures, 7 Tables, to be published in IEEE Transactions on Circuits System and Video Technology (TCSVT). High resolution pdf version and Code can be found at: http://idm.pku.edu.cn/staff/zhangjian/IRJSM

    Generalized Video Deblurring for Dynamic Scenes

    Full text link
    Several state-of-the-art video deblurring methods are based on a strong assumption that the captured scenes are static. These methods fail to deblur blurry videos in dynamic scenes. We propose a video deblurring method to deal with general blurs inherent in dynamic scenes, contrary to other methods. To handle locally varying and general blurs caused by various sources, such as camera shake, moving objects, and depth variation in a scene, we approximate pixel-wise kernel with bidirectional optical flows. Therefore, we propose a single energy model that simultaneously estimates optical flows and latent frames to solve our deblurring problem. We also provide a framework and efficient solvers to optimize the energy model. By minimizing the proposed energy function, we achieve significant improvements in removing blurs and estimating accurate optical flows in blurry frames. Extensive experimental results demonstrate the superiority of the proposed method in real and challenging videos that state-of-the-art methods fail in either deblurring or optical flow estimation.Comment: CVPR 2015 ora

    Kernel Estimation from Salient Structure for Robust Motion Deblurring

    Full text link
    Blind image deblurring algorithms have been improving steadily in the past years. Most state-of-the-art algorithms, however, still cannot perform perfectly in challenging cases, especially in large blur setting. In this paper, we focus on how to estimate a good kernel estimate from a single blurred image based on the image structure. We found that image details caused by blurring could adversely affect the kernel estimation, especially when the blur kernel is large. One effective way to eliminate these details is to apply image denoising model based on the Total Variation (TV). First, we developed a novel method for computing image structures based on TV model, such that the structures undermining the kernel estimation will be removed. Second, to mitigate the possible adverse effect of salient edges and improve the robustness of kernel estimation, we applied a gradient selection method. Third, we proposed a novel kernel estimation method, which is capable of preserving the continuity and sparsity of the kernel and reducing the noises. Finally, we developed an adaptive weighted spatial prior, for the purpose of preserving sharp edges in latent image restoration. The effectiveness of our method is demonstrated by experiments on various kinds of challenging examples.Comment: This work has been accepted by Signal Processing: Image Communication, 201
    • …
    corecore