45,017 research outputs found

    Learning, Categorization, Rule Formation, and Prediction by Fuzzy Neural Networks

    Full text link
    National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-91-J-4100, N00014-92-J-4015) Air Force Office of Scientific Research (90-0083, N00014-92-J-4015

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa

    ART Neural Networks for Remote Sensing Image Analysis

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems, including automatic mapping from remote sensing satellite measurements, parts design retrieval at the Boeing Company, medical database prediction, and robot vision. This paper features a self-contained introduction to ART and ARTMAP dynamics. An application of these networks to image processing is illustrated by means of a remote sensing example. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, which allows the network to encode important rare cases but which may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. Recently developed ART models (dART and dARTMAP) retain stable coding, recognition, and prediction, but allow arbitrarily distributed category representation during learning as well as performance

    ART Neural Networks: Distributed Coding and ARTMAP Applications

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include airplane design and manufacturing, automatic target recognition, financial forecasting, machine tool monitoring, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, Gaussian ARTMAP, and distributed ARTMAP. ARTMAP has been used for a variety of applications, including computer-assisted medical diagnosis. Medical databases present many of the challenges found in general information management settings where speed, efficiency, ease of use, and accuracy are at a premium. A direct goal of improved computer-assisted medicine is to help deliver quality emergency care in situations that may be less than ideal. Working with these problems has stimulated a number of ART architecture developments, including ARTMAP-IC [1]. This paper describes a recent collaborative effort, using a new cardiac care database for system development, has brought together medical statisticians and clinicians at the New England Medical Center with researchers developing expert systems and neural networks, in order to create a hybrid method for medical diagnosis. The paper also considers new neural network architectures, including distributed ART {dART), a real-time model of parallel distributed pattern learning that permits fast as well as slow adaptation, without catastrophic forgetting. Local synaptic computations in the dART model quantitatively match the paradoxical phenomenon of Markram-Tsodyks [2] redistribution of synaptic efficacy, as a consequence of global system hypotheses.Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Art Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data

    Full text link
    A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural network, is developed. System capabilities are tested on a challenging remote sensing classification problem, using spectral and terrain features for vegetation classification in the Cleveland National Forest. After training at the pixel level, system performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest Neighbor algorithms. ARTMAP dynamics are fast, stable, and scalable, overcoming common limitations of back propagation, which did not give satisfactory performance. Best results are obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. A prototype remote sensing example introduces each aspect of data processing and fuzzy ARTMAP classification. The example shows how the network automatically constructs a minimal number of recognition categories to meet accuracy criteria. A voting strategy improves prediction and assigns confidence estimates by training the system several times on different orderings of an input set.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-l-0409, N00014-95-0657
    • …
    corecore