320 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Quantization Watermarking for Joint Compression and Data Hiding Schemes

    Get PDF
    International audienceEnrichment and protection of JPEG2000 images is an important issue. Data hiding techniques are a good solution to solve these problems. In this context, we can consider the joint approach to introduce data hiding technique into JPEG2000 coding pipeline. Data hiding consists of imperceptibly altering multimedia content, to convey some information. This process is done in such a way that the hidden data is not perceptible to an observer. Digital watermarking is one type of data hiding. In addition to the imperceptibility and payload constraints, the watermark should be robust against a variety of manipulations or attacks. We focus on trellis coded quantization (TCQ) data hiding techniques and propose two JPEG2000 compression and data hiding schemes. The properties of TCQ quantization, defined in JPEG2000 part 2, are used to perform quantization and information embedding during the same time. The first scheme is designed for content description and management applications with the objective of achieving high payloads. The compression rate/imperceptibility/payload trade off is our main concern. The second joint scheme has been developed for robust watermarking and can have consequently many applications. We achieve the better imperceptibility/robustness trade off in the context of JPEG2000 compression. We provide some experimental results on the implementation of these two schemes

    Wide spread spectrum watermarking with side information and interference cancellation

    Full text link
    Nowadays, a popular method used for additive watermarking is wide spread spectrum. It consists in adding a spread signal into the host document. This signal is obtained by the sum of a set of carrier vectors, which are modulated by the bits to be embedded. To extract these embedded bits, weighted correlations between the watermarked document and the carriers are computed. Unfortunately, even without any attack, the obtained set of bits can be corrupted due to the interference with the host signal (host interference) and also due to the interference with the others carriers (inter-symbols interference (ISI) due to the non-orthogonality of the carriers). Some recent watermarking algorithms deal with host interference using side informed methods, but inter-symbols interference problem is still open. In this paper, we deal with interference cancellation methods, and we propose to consider ISI as side information and to integrate it into the host signal. This leads to a great improvement of extraction performance in term of signal-to-noise ratio and/or watermark robustness.Comment: 12 pages, 8 figure
    corecore