122 research outputs found

    A Study of trellis coded quantization for image compression

    Get PDF
    Trellis coded quantization has recently evolved as a powerful quantization technique in the world of lossy image compression. The aim of this thesis is to investigate the potential of trellis coded quantization in conjunction with two of the most popular image transforms today; the discrete cosine transform and the discrete wavelet trans form. Trellis coded quantization is compared with traditional scalar quantization. The 4-state and the 8-state trellis coded quantizers are compared in an attempt to come up with a quantifiable difference in their performances. The use of pdf-optimized quantizers for trellis coded quantization is also studied. Results for the simulations performed on two gray-scale images at an uncoded bit rate of 0.48 bits/pixel are presented by way of reconstructed images and the respective peak signal-to-noise ratios. It is evident from the results obtained that trellis coded quantization outperforms scalar quantization in both the discrete cosine transform and the discrete wavelet transform domains. The reconstructed images suggest that there does not seem to be any considerable gain in going from a 4-state to a 8-state trellis coded quantizer. Results also suggest that considerable gain can be had by employing pdf-optimized quantizers for trellis coded quantization instead of uniform quantizers

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems

    High-performance compression of visual information - A tutorial review - Part I : Still Pictures

    Get PDF
    Digital images have become an important source of information in the modern world of communication systems. In their raw form, digital images require a tremendous amount of memory. Many research efforts have been devoted to the problem of image compression in the last two decades. Two different compression categories must be distinguished: lossless and lossy. Lossless compression is achieved if no distortion is introduced in the coded image. Applications requiring this type of compression include medical imaging and satellite photography. For applications such as video telephony or multimedia applications, some loss of information is usually tolerated in exchange for a high compression ratio. In this two-part paper, the major building blocks of image coding schemes are overviewed. Part I covers still image coding, and Part II covers motion picture sequences. In this first part, still image coding schemes have been classified into predictive, block transform, and multiresolution approaches. Predictive methods are suited to lossless and low-compression applications. Transform-based coding schemes achieve higher compression ratios for lossy compression but suffer from blocking artifacts at high-compression ratios. Multiresolution approaches are suited for lossy as well for lossless compression. At lossy high-compression ratios, the typical artifact visible in the reconstructed images is the ringing effect. New applications in a multimedia environment drove the need for new functionalities of the image coding schemes. For that purpose, second-generation coding techniques segment the image into semantically meaningful parts. Therefore, parts of these methods have been adapted to work for arbitrarily shaped regions. In order to add another functionality, such as progressive transmission of the information, specific quantization algorithms must be defined. A final step in the compression scheme is achieved by the codeword assignment. Finally, coding results are presented which compare stateof- the-art techniques for lossy and lossless compression. The different artifacts of each technique are highlighted and discussed. Also, the possibility of progressive transmission is illustrated

    Near-lossless image compression techniques

    Get PDF
    Predictive and multiresolution techniques for near- lossless image compression based on the criterion of maximum allowable deviation of pixel values are investigated. A procedure for near-lossless compression using a modification of lossless predictive coding techniques to satisfy the specified tolerance is described. Simulation results with modified versions of two of the best lossless predictive coding techniques known, CALIC and JPEG-LS, are provided. Application of lossless coding based on reversible transforms in conjunction with prequantization is shown to be inferior to predictive techniques for near-lossless compression. A partial embedding two-layer scheme is proposed in which an embedded multiresolution coder generates a lossy base layer, and a simple but effective context-based lossless coder codes the difference between the original image and the lossy reconstruction. Results show that this lossy plus near-lossless technique yields compression ratios close to those obtained with predictive techniques, while providing the feature of a partially embedded bit-stream. © 1998 SPIE and IS&T

    Compression of Spectral Images

    Get PDF

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding

    High ratio wavelet video compression through real-time rate-distortion estimation.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.The success of the wavelet transform in the compression of still images has prompted an expanding effort to exercise this transform in the compression of video. Most existing video compression methods incorporate techniques from still image compression, such techniques being abundant, well defined and successful. This dissertation commences with a thorough review and comparison of wavelet still image compression techniques. Thereafter an examination of wavelet video compression techniques is presented. Currently, the most effective video compression system is the DCT based framework, thus a comparison between these and the wavelet techniques is also given. Based on this review, this dissertation then presents a new, low-complexity, wavelet video compression scheme. Noting from a complexity study that the generation of temporally decorrelated, residual frames represents a significant computational burden, this scheme uses the simplest such technique; difference frames. In the case of local motion, these difference frames exhibit strong spatial clustering of significant coefficients. A simple spatial syntax is created by splitting the difference frame into tiles. Advantage of the spatial clustering may then be taken by adaptive bit allocation between the tiles. This is the central idea of the method. In order to minimize the total distortion of the frame, the scheme uses the new p-domain rate-distortion estimation scheme with global numerical optimization to predict the optimal distribution of bits between tiles. Thereafter each tile is independently wavelet transformed and compressed using the SPIHT technique. Throughout the design process computational efficiency was the design imperative, thus leading to a real-time, software only, video compression scheme. The scheme is finally compared to both the current video compression standards and the leading wavelet schemes from the literature in terms of computational complexity visual quality. It is found that for local motion scenes the proposed algorithm executes approximately an order of magnitude faster than these methods, and presents output of similar quality. This algorithm is found to be suitable for implementation in mobile and embedded devices due to its moderate memory and computational requirements
    • …
    corecore