206 research outputs found

    Processing Decoded Video for Backlight Dimming:Video Quality Enhancement on LCD with Dynamic Local Backlight

    Get PDF

    Contributions to reconfigurable video coding and low bit rate video coding

    Get PDF
    In this PhD Thesis, two different issues on video coding are stated and their corresponding proposed solutions discussed. In the first place, some problems of the use of video coding standards are identi ed and the potential of new reconfigurable platforms is put to the test. Specifically, the proposal from MPEG for a Reconfigurable Video Coding (RVC) standard is compared with a more ambitious proposal for Fully Configurable Video Coding (FCVC). In both cases, the objective is to nd a way for the definition of new video codecs without the concurrence of a classical standardization process, in order to reduce the time-to-market of new ideas while maintaining the proper interoperability between codecs. The main difference between these approaches is the ability of FCVC to reconfigure each program line in the encoder and decoder definition, while RVC only enables to conform the codec description from a database of standardized functional units. The proof of concept carried out in the FCVC prototype enabled to propose the incorporation of some of the FCVC capabilities in future versions of the RVC standard. The second part of the Thesis deals with the design and implementation of a filtering algorithm in a hybrid video encoder in order to simplify the high frequencies present in the prediction residue, which are the most expensive for the encoder in terms of output bit rate. By means of this filtering, the quantization scale employed by the video encoder in low bit rate is kept in reasonable values and the risk of appearance of encoding artifacts is reduced. The proposed algorithm includes a block for filter control that determines the proper amount of filtering from the encoder operating point and the characteristics of the sequence to be processed. This filter control is tuned according to perceptual considerations related with overall subjective quality assessment. Finally, the complete algorithm was tested by means of a standard subjective video quality assessment test, and the results showed a noticeable improvement in the quality score with respect to the non-filtered version, confirming that the proposed method reduces the presence of harmful low bit rate artifacts

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE
    • …
    corecore