5,374 research outputs found

    New Techniques for High-Contrast Imaging with ADI: the ACORNS-ADI SEEDS Data Reduction Pipeline

    Get PDF
    We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to ~20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field-of-view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a BSD license.Comment: 15 pages, 9 figures, accepted to ApJ. Replaced with accepted version; mostly minor changes. Software update

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    Towards Image-Guided Pediatric Atrial Septal Defect Repair

    Get PDF
    Congenital heart disease occurs in 107.6 out of 10,000 live births, with Atrial Septal Defects (ASD) accounting for 10\% of these conditions. Historically, ASDs were treated with open heart surgery using cardiopulmonary bypass, allowing a patch to be sewn over the defect. In 1976, King et al. demonstrated use of a transcatheter occlusion procedure, thus reducing the invasiveness of ASD repair. Localization during these catheter based procedures traditionally has relied on bi-plane fluoroscopy; more recently trans-esophageal echocardiography (TEE) and intra-cardiac echocardiography (ICE) have been used to navigate these procedures. Although there is a high success rate using the transcatheter occlusion procedure, fluoroscopy poses radiation dose risk to both patient and clinician. The impact of this dose to the patients is important as many of those undergoing this procedure are children, who have an increased risk associated with radiation exposure. Their longer life expectancy than adults provides a larger window of opportunity for expressing the damaging effects of ionizing radiation. In addition, epidemiologic studies of exposed populations have demonstrated that children are considerably more sensitive to the carcinogenic effects radiation. Image-guided surgery (IGS) uses pre-operative and intra-operative images to guide surgery or an interventional procedure. Central to every IGS system is a software application capable of processing and displaying patient images, registration between multiple coordinate systems, and interfacing with a tool tracking system. We have developed a novel image-guided surgery framework called Kit for Navigation by Image Focused Exploration (KNIFE). This software system serves as the core technology by which a system for reduction of radiation exposure to pediatric patients was developed. The bulk of the initial work in this research endevaour was the development of KNIFE which itself went through countless iterations before arriving at its current state as per the feature requirements established. Secondly, since this work involved the use of captured medical images and their use in an IGS software suite, a brief analysis of the physics behind the images was conducted. Through this aspect of the work, intrinsic parameters (principal point and focal point) of the fluoroscope were quantified using a 3D grid calibration phantom. A second grid phantom was traversed through the fluoroscopic imaging volume of II and flat panel based systems at 2 cm intervals building a scatter field of the volume to demonstrate pincushion and \u27S\u27 distortion in the images. Effects of projection distortion on the images was assessed by measuring the fiducial registration error (FRE) of each point used in two different registration techniques, where both methods utilized ordinary procrustes analysis but the second used a projection matrix built from the fluoroscopes calculated intrinsic parameters. A case study was performed to test whether the projection registration outperforms the rigid transform only. Using the knowledge generated were able to successfully design and complete mock clinical procedures using cardiac phantom models. These mock trials at the beginning of this work used a single point to represent catheter location but this was eventually replaced with a full shape model that offered numerous advantages. At the conclusion of this work a novel protocol for conducting IG ASD procedures was developed. Future work would involve the construction of novel EM tracked tools, phantom models for other vascular diseases and finally clinical integration and use

    Diffeomorphic density matching by optimal information transport

    Full text link
    We address the following problem: given two smooth densities on a manifold, find an optimal diffeomorphism that transforms one density into the other. Our framework builds on connections between the Fisher-Rao information metric on the space of probability densities and right-invariant metrics on the infinite-dimensional manifold of diffeomorphisms. This optimal information transport, and modifications thereof, allows us to construct numerical algorithms for density matching. The algorithms are inherently more efficient than those based on optimal mass transport or diffeomorphic registration. Our methods have applications in medical image registration, texture mapping, image morphing, non-uniform random sampling, and mesh adaptivity. Some of these applications are illustrated in examples.Comment: 35 page

    Optimizing MRI sequences and images for MRI-based stereotactic radiosurgery treatment planning

    Get PDF
    © 2018 Aim: Development of MRI sequences and processing methods for the production of images appropriate for direct use in stereotactic radiosurgery (SRS) treatment planning. Background: MRI is useful in SRS treatment planning, especially for patients with brain lesions or anatomical targets that are poorly distinguished by CT, but its use requires further refinement. This methodology seeks to optimize MRI sequences to generate distortion-free and clinically relevant MR images for MRI-only SRS treatment planning. Materials and methods: We used commercially available SRS MRI-guided radiotherapy phantoms and eight patients to optimize sequences for patient imaging. Workflow involved the choice of correct MRI sequence(s), optimization of the sequence parameters, evaluation of image quality (artifact free and clinically relevant), measurement of geometrical distortion, and evaluation of the accuracy of our offline correction algorithm. Results: CT images showed a maximum deviation of 1.3 mm and minimum deviation of 0.4 mm from true fiducial position for SRS coordinate definition. Interestingly, uncorrected MR images showed maximum deviation of 1.2 mm and minimum of 0.4 mm, comparable to CT images used for SRS coordinate definition. After geometrical correction, we observed a maximum deviation of 1.1 mm and minimum deviation of only 0.3 mm. Conclusion: Our optimized MRI pulse sequences and image correction technique show promising results; MR images produced under these conditions are appropriate for direct use in SRS treatment planning

    A Free-Breathing Lung Motion Model

    Get PDF
    Lung cancer has been the leading cause of cancer deaths for decades in the United States. Although radiotherapy is one of the most effective treatments, side effects from error in delivery of radiation due to organ motion during breathing remain a significant issue. To compensate the breathing motion during the treatment, a free breathing lung motion model, x= x0+αv+βf, was developed and discussed, where x is the position of a piece of tissue located at reference position x0. α is a parameter which characterizes the motion due to local air filling: motion as a function of tidal volume) and β is the parameter that accounts for the motion due to the imbalance of dynamical stress distributions during inspiration and exhalation which cause lung motion hysteresis: motion as a function of airflow). The parameters α and β together provide a quantitative characterization of breathing motion that inherently includes the complex hysteresis interplay. The theoretical foundation of the model was built by investigating the stress distribution inside of a lung and the biomechanical properties of the lung tissues. Accuracy of the model was investigated by using 49 free-breathing patient data sets. Applications of the model in localizing lung cancer, monitoring radiation damage and suppressing artifacts in free-breathing PET images were also discussed. This work supported in part by NIHR01CA096679 and NIHR01CA11671

    A Binocular, Foveated Active Vision System

    Get PDF
    This report documents the design and implementation of a binocular, foveated active vision system as part of the Cog project at the MIT Artificial Intelligence Laboratory. The active vision system features a three degree of freedom mechanical platform that supports four color cameras, a motion control system, and a parallel network of digital signal processors for image processing. To demonstrate the capabilities of the system, we present results from four sample visual-motor tasks
    • …
    corecore