26,587 research outputs found

    Deep Clustering With Intra-class Distance Constraint for Hyperspectral Images

    Full text link
    The high dimensionality of hyperspectral images often results in the degradation of clustering performance. Due to the powerful ability of deep feature extraction and non-linear feature representation, the clustering algorithm based on deep learning has become a hot research topic in the field of hyperspectral remote sensing. However, most deep clustering algorithms for hyperspectral images utilize deep neural networks as feature extractor without considering prior knowledge constraints that are suitable for clustering. To solve this problem, we propose an intra-class distance constrained deep clustering algorithm for high-dimensional hyperspectral images. The proposed algorithm constrains the feature mapping procedure of the auto-encoder network by intra-class distance so that raw images are transformed from the original high-dimensional space to the low-dimensional feature space that is more conducive to clustering. Furthermore, the related learning process is treated as a joint optimization problem of deep feature extraction and clustering. Experimental results demonstrate the intense competitiveness of the proposed algorithm in comparison with state-of-the-art clustering methods of hyperspectral images

    Learning A Task-Specific Deep Architecture For Clustering

    Full text link
    While sparse coding-based clustering methods have shown to be successful, their bottlenecks in both efficiency and scalability limit the practical usage. In recent years, deep learning has been proved to be a highly effective, efficient and scalable feature learning tool. In this paper, we propose to emulate the sparse coding-based clustering pipeline in the context of deep learning, leading to a carefully crafted deep model benefiting from both. A feed-forward network structure, named TAGnet, is constructed based on a graph-regularized sparse coding algorithm. It is then trained with task-specific loss functions from end to end. We discover that connecting deep learning to sparse coding benefits not only the model performance, but also its initialization and interpretation. Moreover, by introducing auxiliary clustering tasks to the intermediate feature hierarchy, we formulate DTAGnet and obtain a further performance boost. Extensive experiments demonstrate that the proposed model gains remarkable margins over several state-of-the-art methods

    Deep Multimodal Subspace Clustering Networks

    Full text link
    We present convolutional neural network (CNN) based approaches for unsupervised multimodal subspace clustering. The proposed framework consists of three main stages - multimodal encoder, self-expressive layer, and multimodal decoder. The encoder takes multimodal data as input and fuses them to a latent space representation. The self-expressive layer is responsible for enforcing the self-expressiveness property and acquiring an affinity matrix corresponding to the data points. The decoder reconstructs the original input data. The network uses the distance between the decoder's reconstruction and the original input in its training. We investigate early, late and intermediate fusion techniques and propose three different encoders corresponding to them for spatial fusion. The self-expressive layers and multimodal decoders are essentially the same for different spatial fusion-based approaches. In addition to various spatial fusion-based methods, an affinity fusion-based network is also proposed in which the self-expressive layer corresponding to different modalities is enforced to be the same. Extensive experiments on three datasets show that the proposed methods significantly outperform the state-of-the-art multimodal subspace clustering methods

    Spectral Clustering via Ensemble Deep Autoencoder Learning (SC-EDAE)

    Full text link
    Recently, a number of works have studied clustering strategies that combine classical clustering algorithms and deep learning methods. These approaches follow either a sequential way, where a deep representation is learned using a deep autoencoder before obtaining clusters with k-means, or a simultaneous way, where deep representation and clusters are learned jointly by optimizing a single objective function. Both strategies improve clustering performance, however the robustness of these approaches is impeded by several deep autoencoder setting issues, among which the weights initialization, the width and number of layers or the number of epochs. To alleviate the impact of such hyperparameters setting on the clustering performance, we propose a new model which combines the spectral clustering and deep autoencoder strengths in an ensemble learning framework. Extensive experiments on various benchmark datasets demonstrate the potential and robustness of our approach compared to state-of-the-art deep clustering methods.Comment: Revised manuscrip

    Image Representation Learning Using Graph Regularized Auto-Encoders

    Full text link
    We consider the problem of image representation for the tasks of unsupervised learning and semi-supervised learning. In those learning tasks, the raw image vectors may not provide enough representation for their intrinsic structures due to their highly dense feature space. To overcome this problem, the raw image vectors should be mapped to a proper representation space which can capture the latent structure of the original data and represent the data explicitly for further learning tasks such as clustering. Inspired by the recent research works on deep neural network and representation learning, in this paper, we introduce the multiple-layer auto-encoder into image representation, we also apply the locally invariant ideal to our image representation with auto-encoders and propose a novel method, called Graph regularized Auto-Encoder (GAE). GAE can provide a compact representation which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. Extensive experiments on image clustering show encouraging results of the proposed algorithm in comparison to the state-of-the-art algorithms on real-word cases.Comment: 9page

    Learning Robust Representations for Computer Vision

    Full text link
    Unsupervised learning techniques in computer vision often require learning latent representations, such as low-dimensional linear and non-linear subspaces. Noise and outliers in the data can frustrate these approaches by obscuring the latent spaces. Our main goal is deeper understanding and new development of robust approaches for representation learning. We provide a new interpretation for existing robust approaches and present two specific contributions: a new robust PCA approach, which can separate foreground features from dynamic background, and a novel robust spectral clustering method, that can cluster facial images with high accuracy. Both contributions show superior performance to standard methods on real-world test sets.Comment: 8 pages, 7 page

    Convergent Learning: Do different neural networks learn the same representations?

    Full text link
    Recent success in training deep neural networks have prompted active investigation into the features learned on their intermediate layers. Such research is difficult because it requires making sense of non-linear computations performed by millions of parameters, but valuable because it increases our ability to understand current models and create improved versions of them. In this paper we investigate the extent to which neural networks exhibit what we call convergent learning, which is when the representations learned by multiple nets converge to a set of features which are either individually similar between networks or where subsets of features span similar low-dimensional spaces. We propose a specific method of probing representations: training multiple networks and then comparing and contrasting their individual, learned representations at the level of neurons or groups of neurons. We begin research into this question using three techniques to approximately align different neural networks on a feature level: a bipartite matching approach that makes one-to-one assignments between neurons, a sparse prediction approach that finds one-to-many mappings, and a spectral clustering approach that finds many-to-many mappings. This initial investigation reveals a few previously unknown properties of neural networks, and we argue that future research into the question of convergent learning will yield many more. The insights described here include (1) that some features are learned reliably in multiple networks, yet other features are not consistently learned; (2) that units learn to span low-dimensional subspaces and, while these subspaces are common to multiple networks, the specific basis vectors learned are not; (3) that the representation codes show evidence of being a mix between a local code and slightly, but not fully, distributed codes across multiple units.Comment: Published as a conference paper at ICLR 201

    Image Annotation using Multi-Layer Sparse Coding

    Full text link
    Automatic annotation of images with descriptive words is a challenging problem with vast applications in the areas of image search and retrieval. This problem can be viewed as a label-assignment problem by a classifier dealing with a very large set of labels, i.e., the vocabulary set. We propose a novel annotation method that employs two layers of sparse coding and performs coarse-to-fine labeling. Themes extracted from the training data are treated as coarse labels. Each theme is a set of training images that share a common subject in their visual and textual contents. Our system extracts coarse labels for training and test images without requiring any prior knowledge. Vocabulary words are the fine labels to be associated with images. Most of the annotation methods achieve low recall due to the large number of available fine labels, i.e., vocabulary words. These systems also tend to achieve high precision for highly frequent words only while relatively rare words are more important for search and retrieval purposes. Our system not only outperforms various previously proposed annotation systems, but also achieves symmetric response in terms of precision and recall. Our system scores and maintains high precision for words with a wide range of frequencies. Such behavior is achieved by intelligently reducing the number of available fine labels or words for each image based on coarse labels assigned to it

    Self-Supervised Convolutional Subspace Clustering Network

    Full text link
    Subspace clustering methods based on data self-expression have become very popular for learning from data that lie in a union of low-dimensional linear subspaces. However, the applicability of subspace clustering has been limited because practical visual data in raw form do not necessarily lie in such linear subspaces. On the other hand, while Convolutional Neural Network (ConvNet) has been demonstrated to be a powerful tool for extracting discriminative features from visual data, training such a ConvNet usually requires a large amount of labeled data, which are unavailable in subspace clustering applications. To achieve simultaneous feature learning and subspace clustering, we propose an end-to-end trainable framework, called Self-Supervised Convolutional Subspace Clustering Network (S2^2ConvSCN), that combines a ConvNet module (for feature learning), a self-expression module (for subspace clustering) and a spectral clustering module (for self-supervision) into a joint optimization framework. Particularly, we introduce a dual self-supervision that exploits the output of spectral clustering to supervise the training of the feature learning module (via a classification loss) and the self-expression module (via a spectral clustering loss). Our experiments on four benchmark datasets show the effectiveness of the dual self-supervision and demonstrate superior performance of our proposed approach.Comment: 10 pages, 2 figures, and 5 tables. This paper has been accepted by CVPR201

    Deep Discriminative Clustering Analysis

    Full text link
    Traditional clustering methods often perform clustering with low-level indiscriminative representations and ignore relationships between patterns, resulting in slight achievements in the era of deep learning. To handle this problem, we develop Deep Discriminative Clustering (DDC) that models the clustering task by investigating relationships between patterns with a deep neural network. Technically, a global constraint is introduced to adaptively estimate the relationships, and a local constraint is developed to endow the network with the capability of learning high-level discriminative representations. By iteratively training the network and estimating the relationships in a mini-batch manner, DDC theoretically converges and the trained network enables to generate a group of discriminative representations that can be treated as clustering centers for straightway clustering. Extensive experiments strongly demonstrate that DDC outperforms current methods on eight image, text and audio datasets concurrently
    corecore