171 research outputs found

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    Técnicas de análise de imagens para detecção de retinopatia diabética

    Get PDF
    Orientadores: Anderson de Rezende Rocha. Jacques WainerTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Retinopatia Diabética (RD) é uma complicação a longo prazo do diabetes e a principal causa de cegueira da população ativa. Consultas regulares são necessárias para diagnosticar a retinopatia em um estágio inicial, permitindo um tratamento com o melhor prognóstico capaz de retardar ou até mesmo impedir a cegueira. Alavancados pela evolução da prevalência do diabetes e pelo maior risco que os diabéticos têm de desenvolver doenças nos olhos, diversos trabalhos com abordagens bem estabelecidas e promissoras vêm sendo desenvolvidos para triagem automática de retinopatia. Entretanto, a maior parte dos trabalhos está focada na detecção de lesões utilizando características visuais particulares de cada tipo de lesão. Além do mais, soluções artesanais para avaliação de necessidade de consulta e de identificação de estágios da retinopatia ainda dependem bastante das lesões, cujo repetitivo procedimento de detecção é complexo e inconveniente, mesmo se um esquema unificado for adotado. O estado da arte para avaliação automatizada de necessidade de consulta é composto por abordagens que propõem uma representação altamente abstrata obtida inteiramente por meio dos dados. Usualmente, estas abordagens recebem uma imagem e produzem uma resposta ¿ que pode ser resultante de um único modelo ou de uma combinação ¿ e não são facilmente explicáveis. Este trabalho objetivou melhorar a detecção de lesões e reforçar decisões relacionadas à necessidade de consulta, fazendo uso de avançadas representações de imagens em duas etapas. Nós também almejamos compor um modelo sofisticado e direcionado pelos dados para triagem de retinopatia, bem como incorporar aprendizado supervisionado de características com representação orientada por mapa de calor, resultando em uma abordagem robusta e ainda responsável para triagem automatizada. Finalmente, tivemos como objetivo a integração das soluções em dispositivos portáteis de captura de imagens de retina. Para detecção de lesões, propusemos abordagens de caracterização de imagens que possibilitem uma detecção eficaz de diferentes tipos de lesões. Nossos principais avanços estão centrados na modelagem de uma nova técnica de codificação para imagens de retina, bem como na preservação de informações no processo de pooling ou agregação das características obtidas. Decidir automaticamente pela necessidade de encaminhamento do paciente a um especialista é uma investigação ainda mais difícil e muito debatida. Nós criamos um método mais simples e robusto para decisões de necessidade de consulta, e que não depende da detecção de lesões. Também propusemos um modelo direcionado pelos dados que melhora significativamente o desempenho na tarefa de triagem da RD. O modelo produz uma resposta confiável com base em respostas (locais e globais), bem como um mapa de ativação que permite uma compreensão de importância de cada pixel para a decisão. Exploramos a metodologia de explicabilidade para criar um descritor local codificado em uma rica representação em nível médio. Os modelos direcionados pelos dados são o estado da arte para triagem de retinopatia diabética. Entretanto, mapas de ativação são essenciais para interpretar o aprendizado em termos de importância de cada pixel e para reforçar pequenas características discriminativas que têm potencial de melhorar o diagnósticoAbstract: Diabetic Retinopathy (DR) is a long-term complication of diabetes and the leading cause of blindness among working-age adults. A regular eye examination is necessary to diagnose DR at an early stage, when it can be treated with the best prognosis and the visual loss delayed or deferred. Leveraged by the continuous expansion of diabetics and by the increased risk that those people have to develop eye diseases, several works with well-established and promising approaches have been proposed for automatic screening. Therefore, most existing art focuses on lesion detection using visual characteristics specific to each type of lesion. Additionally, handcrafted solutions for referable diabetic retinopathy detection and DR stages identification still depend too much on the lesions, whose repetitive detection is complex and cumbersome to implement, even when adopting a unified detection scheme. Current art for automated referral assessment resides on highly abstract data-driven approaches. Usually, those approaches receive an image and spit the response out ¿ that might be resulting from only one model or ensembles ¿ and are not easily explainable. Hence, this work aims at enhancing lesion detection and reinforcing referral decisions with advanced handcrafted two-tiered image representations. We also intended to compose sophisticated data-driven models for referable DR detection and incorporate supervised learning of features with saliency-oriented mid-level image representations to come up with a robust yet accountable automated screening approach. Ultimately, we aimed at integrating our software solutions with simple retinal imaging devices. In the lesion detection task, we proposed advanced handcrafted image characterization approaches to detecting effectively different lesions. Our leading advances are centered on designing a novel coding technique for retinal images and preserving information in the pooling process. Automatically deciding on whether or not the patient should be referred to the ophthalmic specialist is a more difficult, and still hotly debated research aim. We designed a simple and robust method for referral decisions that does not rely upon lesion detection stages. We also proposed a novel and effective data-driven model that significantly improves the performance for DR screening. Our accountable data-driven model produces a reliable (local- and global-) response along with a heatmap/saliency map that enables pixel-based importance comprehension. We explored this methodology to create a local descriptor that is encoded into a rich mid-level representation. Data-driven methods are the state of the art for diabetic retinopathy screening. However, saliency maps are essential not only to interpret the learning in terms of pixel importance but also to reinforce small discriminative characteristics that have the potential to enhance the diagnosticDoutoradoCiência da ComputaçãoDoutor em Ciência da ComputaçãoCAPE

    Ensemble of different local descriptors, codebook generation methods and subwindow configurations for building a reliable computer vision system

    Get PDF
    Abstract In the last few years, several ensemble approaches have been proposed for building high performance systems for computer vision. In this paper we propose a system that incorporates several perturbation approaches and descriptors for a generic computer vision system. Some of the approaches we investigate include using different global and bag-of-feature-based descriptors, different clusterings for codebook creations, and different subspace projections for reducing the dimensionality of the descriptors extracted from each region. The basic classifier used in our ensembles is the Support Vector Machine. The ensemble decisions are combined by sum rule. The robustness of our generic system is tested across several domains using popular benchmark datasets in object classification, scene recognition, and building recognition. Of particular interest are tests using the new VOC2012 database where we obtain an average precision of 88.7 (we submitted a simplified version of our system to the person classification-object contest to compare our approach with the true state-of-the-art in 2012). Our experimental section shows that we have succeeded in obtaining our goal of a high performing generic object classification system. The MATLAB code of our system will be publicly available at http://www.dei.unipd.it/wdyn/?IDsezione=3314&IDgruppo_pass=124&preview= . Our free MATLAB toolbox can be used to verify the results of our system. We also hope that our toolbox will serve as the foundation for further explorations by other researchers in the computer vision field

    Data Driven Approaches for Image & Video Understanding: from Traditional to Zero-shot Supervised Learning

    Get PDF
    In the present age of advanced computer vision, the necessity of (user-annotated) data is a key factor in image & video understanding. Recent success of deep learning on large scale data has only acted as a catalyst. There are certain problems that exist in this regard: 1) scarcity of (annotated) data, 2) need of expensive manual annotation, 3) problem of change in domain, 4) knowledge base not exhaustive. To make efficient learning systems, one has to be prepared to deal with such diverse set of problems. In terms of data availability, extensive manual annotation can be beneficial in obtaining category specific knowledge. Even then, learning efficient representation for the related task is challenging and requires special attention. On the other hand, when labelled data is scarce, learning category specific representation itself becomes challenging. In this work, I investigate data driven approaches that cater to traditional supervised learning setup as well as an extreme case of data scarcity where no data from test classes are available during training, known as zero-shot learning. First, I look into supervised learning setup with ample annotations and propose efficient dictionary learning technique for better learning of data representation for the task of action classification in images & videos. Then I propose robust mid-level feature representations for action videos that are equally effective in traditional supervised learning as well as zero-shot learning. Finally, I come up with novel approach that cater to zero-shot learning specifically. Thorough discussions followed by experimental validations establish the worth of these novel techniques in solving computer vision related tasks under varying data-dependent scenarios

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    Semantic-enriched visual vocabulary construction in a weakly supervised context

    Full text link
    © 2015 - IOS Press and the authors. All rights reserved. One of the prevalent learning tasks involving images is content-based image classification. This is a difficult task especially because the low-level features used to digitally describe images usually capture little information about the semantics of the images. In this paper, we tackle this difficulty by enriching the semantic content of the image representation by using external knowledge. The underlying hypothesis of our work is that creating a more semantically rich representation for images would yield higher machine learning performances, without the need to modify the learning algorithms themselves. The external semantic information is presented under the form of non-positional image labels, therefore positioning our work in a weakly supervised context. Two approaches are proposed: the first one leverages the labels into the visual vocabulary construction algorithm, the result being dedicated visual vocabularies. The second approach adds a filtering phase as a pre-processing of the vocabulary construction. Known positive and known negative sets are constructed and features that are unlikely to be associated with the objects denoted by the labels are filtered. We apply our proposition to the task of content-based image classification and we show that semantically enriching the image representation yields higher classification performances than the baseline representation
    • …
    corecore