1,752 research outputs found

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    MOON: A Mixed Objective Optimization Network for the Recognition of Facial Attributes

    Full text link
    Attribute recognition, particularly facial, extracts many labels for each image. While some multi-task vision problems can be decomposed into separate tasks and stages, e.g., training independent models for each task, for a growing set of problems joint optimization across all tasks has been shown to improve performance. We show that for deep convolutional neural network (DCNN) facial attribute extraction, multi-task optimization is better. Unfortunately, it can be difficult to apply joint optimization to DCNNs when training data is imbalanced, and re-balancing multi-label data directly is structurally infeasible, since adding/removing data to balance one label will change the sampling of the other labels. This paper addresses the multi-label imbalance problem by introducing a novel mixed objective optimization network (MOON) with a loss function that mixes multiple task objectives with domain adaptive re-weighting of propagated loss. Experiments demonstrate that not only does MOON advance the state of the art in facial attribute recognition, but it also outperforms independently trained DCNNs using the same data. When using facial attributes for the LFW face recognition task, we show that our balanced (domain adapted) network outperforms the unbalanced trained network.Comment: Post-print of manuscript accepted to the European Conference on Computer Vision (ECCV) 2016 http://link.springer.com/chapter/10.1007%2F978-3-319-46454-1_

    Enhancing Automatic Annotation for Optimal Image Retrieval

    Get PDF
    Image search and retrieval based on content is very cumbersome task particularly when the image database is large. The accuracy of the retrieval as well as the processing speed are two important measures used for assessing and comparing the effectiveness of various systems. Text retrieval is more mature and advanced than image content retrieval. In this dissertation, the focus is on converting image content into text tags that can be easily searched using standard search engines where the size and speed issues of the database have been already dealt with. Therefore, image tagging becomes an essential tool for image retrieval from large image databases. Automation of image tagging has received considerable attention by many researchers in recent years. The optimal goal of image description is to automatically annotate images with tags that semantically represent the image content. The speed and accuracy of Image retrieval from large databases are few of the important domains that can benefit from automatic tagging. In this work, several state of the art image classification and image tagging techniques are reviewed. We propose a new self-learning multilayered tagging framework that can address the limitations of current approaches and provide mutual accuracy improvement between the recognition layer and the annotation layer. Our results indicate that the proposed framework can improve the overall accuracy of information retrieval in a variety of image databases

    Attribute Recognition by Joint Recurrent Learning of Context and Correlation

    Get PDF
    Recognising semantic pedestrian attributes in surveillance images is a challenging task for computer vision, particularly when the imaging quality is poor with complex background clutter and uncontrolled viewing conditions, and the number of labelled training data is small. In this work, we formulate a Joint Recurrent Learning (JRL) model for exploring attribute context and correlation in order to improve attribute recognition given small sized training data with poor quality images. The JRL model learns jointly pedestrian attribute correlations in a pedestrian image and in particular their sequential ordering dependencies (latent high-order correlation) in an end-to-end encoder/decoder recurrent network. We demonstrate the performance advantage and robustness of the JRL model over a wide range of state-of-the-art deep models for pedestrian attribute recognition, multi-label image classification, and multi-person image annotation on two largest pedestrian attribute benchmarks PETA and RAP.Comment: Accepted by ICCV 201

    HIERARCHICAL LEARNING OF DISCRIMINATIVE FEATURES AND CLASSIFIERS FOR LARGE-SCALE VISUAL RECOGNITION

    Get PDF
    Enabling computers to recognize objects present in images has been a long standing but tremendously challenging problem in the field of computer vision for decades. Beyond the difficulties resulting from huge appearance variations, large-scale visual recognition poses unprecedented challenges when the number of visual categories being considered becomes thousands, and the amount of images increases to millions. This dissertation contributes to addressing a number of the challenging issues in large-scale visual recognition. First, we develop an automatic image-text alignment method to collect massive amounts of labeled images from the Web for training visual concept classifiers. Specif- ically, we first crawl a large number of cross-media Web pages containing Web images and their auxiliary texts, and then segment them into a collection of image-text pairs. We then show that near-duplicate image clustering according to visual similarity can significantly reduce the uncertainty on the relatedness of Web images’ semantics to their auxiliary text terms or phrases. Finally, we empirically demonstrate that ran- dom walk over a newly proposed phrase correlation network can help to achieve more precise image-text alignment by refining the relevance scores between Web images and their auxiliary text terms. Second, we propose a visual tree model to reduce the computational complexity of a large-scale visual recognition system by hierarchically organizing and learning the classifiers for a large number of visual categories in a tree structure. Compared to previous tree models, such as the label tree, our visual tree model does not require training a huge amount of classifiers in advance which is computationally expensive. However, we experimentally show that the proposed visual tree achieves results that are comparable or even better to other tree models in terms of recognition accuracy and efficiency. Third, we present a joint dictionary learning (JDL) algorithm which exploits the inter-category visual correlations to learn more discriminative dictionaries for image content representation. Given a group of visually correlated categories, JDL simul- taneously learns one common dictionary and multiple category-specific dictionaries to explicitly separate the shared visual atoms from the category-specific ones. We accordingly develop three classification schemes to make full use of the dictionaries learned by JDL for visual content representation in the task of image categoriza- tion. Experiments on two image data sets which respectively contain 17 and 1,000 categories demonstrate the effectiveness of the proposed algorithm. In the last part of the dissertation, we develop a novel data-driven algorithm to quantitatively characterize the semantic gaps of different visual concepts for learning complexity estimation and inference model selection. The semantic gaps are estimated directly in the visual feature space since the visual feature space is the common space for concept classifier training and automatic concept detection. We show that the quantitative characterization of the semantic gaps helps to automatically select more effective inference models for classifier training, which further improves the recognition accuracy rates
    • 

    corecore