573 research outputs found

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Learning visual representations with neural networks for video captioning and image generation

    Full text link
    La recherche sur les reĢseaux de neurones a permis de reĢaliser de larges progreĢ€s durant la dernieĢ€re deĢcennie. Non seulement les reĢseaux de neurones ont eĢteĢ appliqueĢs avec succeĢ€s pour reĢsoudre des probleĢ€mes de plus en plus complexes; mais ils sont aussi devenus lā€™approche dominante dans les domaines ouĢ€ ils ont eĢteĢ testeĢs tels que la compreĢhension du langage, les agents jouant aĢ€ des jeux de manieĢ€re automatique ou encore la vision par ordinateur, graĢ‚ce aĢ€ leurs capaciteĢs calculatoires et leurs efficaciteĢs statistiques. La preĢsente theĢ€se eĢtudie les reĢseaux de neurones appliqueĢs aĢ€ des probleĢ€mes en vision par ordinateur, ouĢ€ les repreĢsentations seĢmantiques abstraites jouent un roĢ‚le fondamental. Nous deĢmontrerons, aĢ€ la fois par la theĢorie et par lā€™expeĢrimentation, la capaciteĢ des reĢseaux de neurones aĢ€ apprendre de telles repreĢsentations aĢ€ partir de donneĢes, avec ou sans supervision. Le contenu de la theĢ€se est diviseĢ en deux parties. La premieĢ€re partie eĢtudie les reĢseaux de neurones appliqueĢs aĢ€ la description de videĢo en langage naturel, neĢcessitant lā€™apprentissage de repreĢsentation visuelle. Le premier modeĢ€le proposeĢ permet dā€™avoir une attention dynamique sur les diffeĢrentes trames de la videĢo lors de la geĢneĢration de la description textuelle pour de courtes videĢos. Ce modeĢ€le est ensuite ameĢlioreĢ par lā€™introduction dā€™une opeĢration de convolution reĢcurrente. Par la suite, la dernieĢ€re section de cette partie identifie un probleĢ€me fondamental dans la description de videĢo en langage naturel et propose un nouveau type de meĢtrique dā€™eĢvaluation qui peut eĢ‚tre utiliseĢ empiriquement comme un oracle afin dā€™analyser les performances de modeĢ€les concernant cette taĢ‚che. La deuxieĢ€me partie se concentre sur lā€™apprentissage non-superviseĢ et eĢtudie une famille de modeĢ€les capables de geĢneĢrer des images. En particulier, lā€™accent est mis sur les ā€œNeural Autoregressive Density Estimators (NADEs), une famille de modeĢ€les probabilistes pour les images naturelles. Ce travail met tout dā€™abord en eĢvidence une connection entre les modeĢ€les NADEs et les reĢseaux stochastiques geĢneĢratifs (GSN). De plus, une ameĢlioration des modeĢ€les NADEs standards est proposeĢe. DeĢnommeĢs NADEs iteĢratifs, cette ameĢlioration introduit plusieurs iteĢrations lors de lā€™infeĢrence du modeĢ€le NADEs tout en preĢservant son nombre de parameĢ€tres. DeĢbutant par une revue chronologique, ce travail se termine par un reĢsumeĢ des reĢcents deĢveloppements en lien avec les contributions preĢsenteĢes dans les deux parties principales, concernant les probleĢ€mes dā€™apprentissage de repreĢsentation seĢmantiques pour les images et les videĢos. De prometteuses directions de recherche sont envisageĢes.The past decade has been marked as a golden era of neural network research. Not only have neural networks been successfully applied to solve more and more challenging real- world problems, but also they have become the dominant approach in many of the places where they have been tested. These places include, for instance, language understanding, game playing, and computer vision, thanks to neural networksā€™ superiority in computational efficiency and statistical capacity. This thesis applies neural networks to problems in computer vision where high-level and semantically meaningful representations play a fundamental role. It demonstrates both in theory and in experiment the ability to learn such representations from data with and without supervision. The main content of the thesis is divided into two parts. The first part studies neural networks in the context of learning visual representations for the task of video captioning. Models are developed to dynamically focus on different frames while generating a natural language description of a short video. Such a model is further improved by recurrent convolutional operations. The end of this part identifies fundamental challenges in video captioning and proposes a new type of evaluation metric that may be used experimentally as an oracle to benchmark performance. The second part studies the family of models that generate images. While the first part is supervised, this part is unsupervised. The focus of it is the popular family of Neural Autoregressive Density Estimators (NADEs), a tractable probabilistic model for natural images. This work first makes a connection between NADEs and Generative Stochastic Networks (GSNs). The standard NADE is improved by introducing multiple iterations in its inference without increasing the number of parameters, which is dubbed iterative NADE. With a historical view at the beginning, this work ends with a summary of recent development for work discussed in the first two parts around the central topic of learning visual representations for images and videos. A bright future is envisioned at the end

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Manifold Learning Approaches to Compressing Latent Spaces of Unsupervised Feature Hierarchies

    Get PDF
    Field robots encounter dynamic unstructured environments containing a vast array of unique objects. In order to make sense of the world in which they are placed, they collect large quantities of unlabelled data with a variety of sensors. Producing robust and reliable applications depends entirely on the ability of the robot to understand the unlabelled data it obtains. Deep Learning techniques have had a high level of success in learning powerful unsupervised representations for a variety of discriminative and generative models. Applying these techniques to problems encountered in field robotics remains a challenging endeavour. Modern Deep Learning methods are typically trained with a substantial labelled dataset, while datasets produced in a field robotics context contain limited labelled training data. The primary motivation for this thesis stems from the problem of applying large scale Deep Learning models to field robotics datasets that are label poor. While the lack of labelled ground truth data drives the desire for unsupervised methods, the need for improving the model scaling is driven by two factors, performance and computational requirements. When utilising unsupervised layer outputs as representations for classification, the classification performance increases with layer size. Scaling up models with multiple large layers of features is problematic, as the sizes of subsequent hidden layers scales with the size of the previous layer. This quadratic scaling, and the associated time required to train such networks has prevented adoption of large Deep Learning models beyond cluster computing. The contributions in this thesis are developed from the observation that parameters or filter el- ements learnt in Deep Learning systems are typically highly structured, and contain related ele- ments. Firstly, the structure of unsupervised filters is utilised to construct a mapping from the high dimensional filter space to a low dimensional manifold. This creates a significantly smaller repre- sentation for subsequent feature learning. This mapping, and its effect on the resulting encodings, highlights the need for the ability to learn highly overcomplete sets of convolutional features. Driven by this need, the unsupervised pretraining of Deep Convolutional Networks is developed to include a number of modern training and regularisation methods. These pretrained models are then used to provide initialisations for supervised convolutional models trained on low quantities of labelled data. By utilising pretraining, a significant increase in classification performance on a number of publicly available datasets is achieved. In order to apply these techniques to outdoor 3D Laser Illuminated Detection And Ranging data, we develop a set of resampling techniques to provide uniform input to Deep Learning models. The features learnt in these systems outperform the high effort hand engineered features developed specifically for 3D data. The representation of a given signal is then reinterpreted as a combination of modes that exist on the learnt low dimensional filter manifold. From this, we develop an encoding technique that allows the high dimensional layer output to be represented as a combination of low dimensional components. This allows the growth of subsequent layers to only be dependent on the intrinsic dimensionality of the filter manifold and not the number of elements contained in the previous layer. Finally, the resulting unsupervised convolutional model, the encoding frameworks and the em- bedding methodology are used to produce a new unsupervised learning stratergy that is able to encode images in terms of overcomplete filter spaces, without producing an explosion in the size of the intermediate parameter spaces. This model produces classification results on par with state of the art models, yet requires significantly less computational resources and is suitable for use in the constrained computation environment of a field robot

    Adaptive Edge-guided Block-matching and 3D filtering (BM3D) Image Denoising Algorithm

    Get PDF
    Image denoising is a well studied field, yet reducing noise from images is still a valid challenge. Recently proposed Block-matching and 3D filtering (BM3D) is the current state of the art algorithm for denoising images corrupted by Additive White Gaussian noise (AWGN). Though BM3D outperforms all existing methods for AWGN denoising, still its performance decreases as the noise level increases in images, since it is harder to find proper match for reference blocks in the presence of highly corrupted pixel values. It also blurs sharp edges and textures. To overcome these problems we proposed an edge guided BM3D with selective pixel restoration. For higher noise levels it is possible to detect noisy pixels form its neighborhoods gray level statistics. We exploited this property to reduce noise as much as possible by applying a pre-filter. We also introduced an edge guided pixel restoration process in the hard-thresholding step of BM3D to restore the sharpness of edges and textures. Experimental results confirm that our proposed method is competitive and outperforms the state of the art BM3D in all considered subjective and objective quality measurements, particularly in preserving edges, textures and image contrast
    • ā€¦
    corecore