388 research outputs found

    Quantification of Placental Dysfunction in Pregnancy Complications

    Get PDF
    Background The pathogenetic mechanisms behind placental dysfunction-related complications like preeclampsia and intrauterine growth restriction have remained perplexing till now, in part because of lack of well-defined structural and functional molecular characterisation. There is growing evidence that links trophoblast debris and the existence of syncytial nuclear aggregates (SNA) to the pathogenesis of gestational diseases. Characterisation and quantification of structural and functional parameters of placental dysfunction may give researchers a clearer picture of the mechanisms underlying the development of high risk pregnancy. Methods Placental samples were obtained from normal term pregnancies, preterm controls, as well as from pregnancies complicated by preeclampsia (PET), intrauterine growth restriction (IUGR) and PET-IUGR. Formalin-fixed, paraffin-embedded sections were visualised with H&E, stained using immunohistochemistry (IHC) and digitally scanned. Using stereological methodology, volumes of placental SNAs, trophoblasts, villi and capillaries were measured. Three dimensional (3D) volume reconstructions of terminal placental villi with SNAs and fibrinoid degenerations were created. IHC-labelled slides were analysed by image analysis algorithms. Differential expression of placental genes and miRNAs, hypothesised to regulate cell death in placental dysfunction, were quantified using RT-qPCR. BeWo cell lines were carried out for in vitro validation of the effects miRNAs regulating programmed cell death (PCD) using flow cytometry and western blotting. Results Specific morphometric patterns of villous, trophoblasts, SNA and capillary volumes were demonstrated with characteristic higher SNAs and lower capillary volumes in PET placentae with reciprocal patterns in IUGR placentae showing a negative correlation pattern between nuclear aggregates and capillary volumes. Image analysis of immune-labelled slides showed a higher autophagy marker expression in PET and a positive correlation to SNAs as well as a balanced reciprocal expression patterns with apoptosis. Moreover, miR-204 transfected BeWo cells showed a similar balanced reciprocal regulation of autophagy and apoptosis expressions. Conclusion We have demonstrated that applying stereology-based and image analysis on digitised placental sections can be useful in quantifying and dissecting structural and functional patterns in normal and abnormal placental function. 3D reconstruction model are a novel approach towards placental characterisation in normal and complicated pregnancies. The study also showed that miR-204 plays a vital role in the regulation of placental autophagy and apoptosis, critical in the pathophysiology of placental dysfunction

    Quantification of Placental Dysfunction in Pregnancy Complications

    Get PDF
    Background The pathogenetic mechanisms behind placental dysfunction-related complications like preeclampsia and intrauterine growth restriction have remained perplexing till now, in part because of lack of well-defined structural and functional molecular characterisation. There is growing evidence that links trophoblast debris and the existence of syncytial nuclear aggregates (SNA) to the pathogenesis of gestational diseases. Characterisation and quantification of structural and functional parameters of placental dysfunction may give researchers a clearer picture of the mechanisms underlying the development of high risk pregnancy. Methods Placental samples were obtained from normal term pregnancies, preterm controls, as well as from pregnancies complicated by preeclampsia (PET), intrauterine growth restriction (IUGR) and PET-IUGR. Formalin-fixed, paraffin-embedded sections were visualised with H&E, stained using immunohistochemistry (IHC) and digitally scanned. Using stereological methodology, volumes of placental SNAs, trophoblasts, villi and capillaries were measured. Three dimensional (3D) volume reconstructions of terminal placental villi with SNAs and fibrinoid degenerations were created. IHC-labelled slides were analysed by image analysis algorithms. Differential expression of placental genes and miRNAs, hypothesised to regulate cell death in placental dysfunction, were quantified using RT-qPCR. BeWo cell lines were carried out for in vitro validation of the effects miRNAs regulating programmed cell death (PCD) using flow cytometry and western blotting. Results Specific morphometric patterns of villous, trophoblasts, SNA and capillary volumes were demonstrated with characteristic higher SNAs and lower capillary volumes in PET placentae with reciprocal patterns in IUGR placentae showing a negative correlation pattern between nuclear aggregates and capillary volumes. Image analysis of immune-labelled slides showed a higher autophagy marker expression in PET and a positive correlation to SNAs as well as a balanced reciprocal expression patterns with apoptosis. Moreover, miR-204 transfected BeWo cells showed a similar balanced reciprocal regulation of autophagy and apoptosis expressions. Conclusion We have demonstrated that applying stereology-based and image analysis on digitised placental sections can be useful in quantifying and dissecting structural and functional patterns in normal and abnormal placental function. 3D reconstruction model are a novel approach towards placental characterisation in normal and complicated pregnancies. The study also showed that miR-204 plays a vital role in the regulation of placental autophagy and apoptosis, critical in the pathophysiology of placental dysfunction

    Born too small, too soon : how can we save them? : a novel interleukin-1 antagonist, Rytvela, successfully reverses the inflammatory cascade leading to intrauterine growth restriction and preterm birth

    Full text link
    Contexte : Près de 2,5 millions de nouveau-nés meurent chaque année et plus de 80 % d'entre eux ont un petit poids à la naissance (PPN). Le PPN est une entité clinique complexe impliquant le retard de croissance in utero (RCIU) et la naissance prématurée (NPM). Les nouveau-nés survivants sont exposés à un risque élevé de morbidités périnatales graves (telles que la dysplasie broncho-pulmonaire, l'entérocolite nécrosante, l'encéphalopathie néonatale) en raison des effets dévastateurs de l'inflammation utéro-fœtale sur les organes fœtaux vulnérables. Il n'existe actuellement aucun traitement efficace pour la protection fœtale ante partum. Parmi les nombreux médiateurs pro-inflammatoires, l'IL-1β se distingue par ses effets délétères. Notre laboratoire a conçu un nouvel antagoniste allostérique du récepteur de l'IL-1, Rytvela, qui s'est avéré efficace contre la NPM lorsqu'il est administré en prophylaxie. Objectif : Cette étude vise à mieux caractériser Rytvela en évaluant son efficacité dans la prévention de la NPM et du RCIU lorsqu'il est administré après l'insulte inflammatoire initiale selon un cadre clinique plus réaliste. Méthodes : Des souris gravides CD-1 ont reçu une injection d'agents pro-inflammatoires/pro-travail, soit l’IL-1β (1 μg i.u.) ou le LPS (10 μg i.p.) aux jours 16-17 de la gestation. Rytvela (2 mg/kg/jour s.c.) a été administré à différents intervalles de temps (0,5h, 2h, 4h, 6h) après l’induction inflammatoire. Le taux de NPM, la survie et le poids des souriceaux ont été évalués. Des analyses histologiques des poumons, intestins et cerveau des nouveau-nés ont été réalisées. Résultats : Toutes les grossesses traitées avec Rytvela ont été menées à terme dans le modèle de l’IL-1β, alors que le taux de NPM était de 57 % dans le groupe non traité. La survie, la croissance et le poids des souriceaux ont été considérablement améliorés avec Rytvela administré 0,5 h post-inflammation (avec une survie presque doublée des portées). L'analyse histologique a révélé dans tous les modèles une morphogenèse fœtale protégée, y compris une alvéolarisation pulmonaire préservée, des villosités intestinales intactes et un arbre cérébrovasculaire protégé associé à une masse cérébrale préservée. Conclusion : Rytvela est efficace dans la prévention de la NPM et du RCIU lorsqu'il est administré en post-inflammatoire. Il présente un effet maximal lorsqu'il était administré rapidement (0,5 h après IL-1β/LPS) et maintenait des effets protecteurs fœtaux significatifs avec une administration retardée (jusqu'à 6 h après IL-1β/LPS). Rytvela améliore la survie et la santé néonatale en préservant l'intégrité et la croissance des tissus fœtaux. Par conséquent, Rytvela est un nouveau prototype thérapeutique prometteur et sécuritaire pour le traitement de la NPM et du RCIU.Background: Over 2.5 million newborns die yearly and more than 80% of them are of low birthweight (LBW). LBW is a complex clinical entity involving fetal growth restriction (FGR) and preterm birth (PTB). Surviving neonates face a higher risk of serious perinatal morbidities (such as bronchopulmonary dysplasia, necrotizing enterocolitis, neonatal encephalopathy) due to the devastating effects of utero-fetal inflammation on vulnerable fetal organs. There is currently no efficient treatment for fetal antepartum protection. Among the many proinflammatory mediators, IL-1β stands out for its detrimental effects. The host lab has designed a novel allosteric IL-1 receptor antagonist, Rytvela, which has been shown to be effective against PTB when administered prophylactically. Objective: This study aims to further characterize Rytvela by evaluating its efficacy in preventing PTB and FGR when administered after the initial inflammatory insult according to a more realistic clinical setting. Methods: Pregnant CD-1 mice were injected with proinflammatory/prolabour agents, either IL-1β (1 μg i.u.) or LPS (10 μg i.p.) on days 16-17 of gestation. Rytvela (2 mg/kg/day s.c.) was administered at different time intervals (0.5, 2, 4, 6 h) after initial inflammatory insults. PTB rate, neonatal survival, and weight were assessed. Histological analyses of the lungs, intestines, and brain of the neonates were performed. Results: All pregnancies treated with Rytvela were carried to term in the IL-1β model, while the PTB rate was 57% in the untreated group. Pup survival, growth and weight were considerably improved with Rytvela administered 0.5h post-inflammatory insults (with a nearly 2-fold increase in litters survival). Histological analysis revealed in all models a protected morphogenesis of vulnerable fetal organs including preserved lung alveolarization, intact intestinal villi integrity, and protected cerebrovascular tree associated with preserved brain mass. Conclusion: Rytvela is efficient in preventing PTB and FGR when administered post-inflammatory insults. It exhibited maximum effect when administered promptly (0.5h post-IL-1β/LPS) and maintained significant fetal protective effects with delayed administration (up to 6h post- IL-1β/LPS). Rytvela improved birth outcome by preserving fetal tissue integrity and growth. Hence, Rytvela is a promising new and safe therapeutic prototype for treatment of PTB and FGR

    Doctor of Philosophy

    Get PDF
    dissertationInspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition. Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30-60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting
    • …
    corecore