10,481 research outputs found

    Image data hiding

    Get PDF
    Image data hiding represents a class of processes used to embed data into cover images. Robustness is one of the basic requirements for image data hiding. In the first part of this dissertation, 2D and 3D interleaving techniques associated with error-correction-code (ECC) are proposed to significantly improve the robustness of hidden data against burst errors. In most cases, the cover image cannot be inverted back to the original image after the hidden data are retrieved. In this dissertation, one novel reversible (lossless) data hiding technique is then introduced. This technique is based on the histogram modification, which can embed a large amount of data while keeping a very high visual quality for all images. The performance is hence better than most existing reversible data hiding algorithms. However, most of the existing lossless data hiding algorithms are fragile in the sense that the hidden data cannot be extracted correctly after compression or small alteration. In the last part of this dissertation, we then propose a novel robust lossless data hiding technique based on patchwork idea and spatial domain pixel modification. This technique does not generate annoying salt-pepper noise at all, which is unavoidable in the other existing robust lossless data hiding algorithm. This technique has been successfully applied to many commonly used images, thus demonstrating its generality

    Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera

    Get PDF
    The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x,y)(x,y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C2_2F3_3I photolysis are presented. The experiments utilized femtosecond UV and VUV (160.8~nm and 267~nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicates the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared

    Air Quality and Airflow Characteristic Studies for Passenger Aircraft Cabins

    Get PDF
    This chapter summarizes the work done at the Airliner Cabin Environment Research Lab (ACERL) related to air quality, airflow characteristics, and human thermal comfort inside aircraft cabins. The laboratory is part of the Institute for Environmental Research (IER) at Kansas State University. It has a Boing 767 mockup cabin, bleed air simulator, and a Boeing 737 actual aircraft section that were all utilized to conduct experimental studies to understand air quality inside aircraft cabins. The studies summarized in this chapter include particle image velocimetry (PIV) investigations, particle dispersion, computational fluid dynamics (CFD) simulations, tracer gas and smoke visualization studies, and bleed air investigations. The chapter also summarizes other related studies including virus dispersion, air quality monitoring devices, and related developed air quality standards. The scope of this chapter is to summarize the setup and results of each of the above categories. This summary along with the cited references provides results for full size aircraft cabin environments, helps validate data for CFD simulations, and provides comparison data for other similar studies. This helps improve the design of future aircraft cabins and their ventilation systems and recommends changes to maintenance practices done that can improve the health and safety of humans inside these enclosed compartments

    Parallel and distributed iterative algorithms : a selective survey

    Get PDF
    Cover title.Includes bibliographical references.Supported by the NSF with matching funds from Bellcore, Inc. and IBM Inc. ECS-8519058 ECS-8552419 Supported by the ARO. DAAL03-86-K-0171Dimitri P. Bertsekas, John N. Tsitsiklis

    The power spectrum of systematics in cosmic shear tomography and the bias on cosmological parameters

    Get PDF
    Cosmic shear tomography has emerged as one of the most promising tools to both investigate the nature of dark energy and discriminate between General Relativity and modified gravity theories. In order to successfully achieve these goals, systematics in shear measurements have to be taken into account; their impact on the weak lensing power spectrum has to be carefully investigated in order to estimate the bias induced on the inferred cosmological parameters. To this end, we develop here an efficient tool to compute the power spectrum of systematics by propagating, in a realistic way, shear measurement, source properties and survey setup uncertainties. Starting from analytical results for unweighted moments and general assumptions on the relation between measured and actual shear, we derive analytical expressions for the multiplicative and additive bias, showing how these terms depend not only on the shape measurement errors, but also on the properties of the source galaxies (namely, size, magnitude and spectral energy distribution). We are then able to compute the amplitude of the systematics power spectrum and its scaling with redshift, while we propose a multigaussian expansion to model in a non-parametric way its angular scale dependence. Our method allows to self-consistently propagate the systematics uncertainties to the finally observed shear power spectrum, thus allowing us to quantify the departures from the actual spectrum. We show that even a modest level of systematics can induce non-negligible deviations, thus leading to a significant bias on the recovered cosmological parameters.Comment: 19 pages, 5 tables, 4 figure

    Proceedings Of The 18th Annual Meeting Of The Asia Oceania Geosciences Society (Aogs 2021)

    Get PDF
    The 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021) was held from 1st to 6th August 2021. This proceedings volume includes selected extended abstracts from a challenging array of presentations at this conference. The AOGS Annual Meeting is a leading venue for professional interaction among researchers and practitioners, covering diverse disciplines of geosciences

    Microgravity combustion science: Progress, plans, and opportunities

    Get PDF
    An earlier overview is updated which introduced the promise of microgravity combustion research and provided a brief survey of results and then current research participants, the available set of reduced gravity facilities, and plans for experimental capabilities in the space station era. Since that time, several research studies have been completed in drop towers and aircraft, and the first space based combustion experiments since Skylab have been conducted on the Shuttle. The microgravity environment enables a new range of experiments to be performed since buoyancy induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments are feasible. In addition to new examinations of classical problems, (e.g., droplet burning), current areas of interest include soot formation and weak turbulence, as influenced by gravity

    Experimental study of fluid flow and heat transfer in tortuous microchannels

    Get PDF
    Tortuous microchannels have attracted increasing interest due to great potential to enhance fluid mixing and heat transfer. While the fluid flow and heat transfer in wavy microchannels have been studied extensively in a numerical fashion, experimental studies are very limited due to the technical difficulties of making accurate measurements in micro-scale flows. This thesis provides insights into thermohydraulics of tortuous microchannels by developing experimental techniques and performing systematic visualisation and heat transfer experiments. The detailed flow patterns (including Dean vortices) and transition behaviours in wavy channels are successfully identified using Micro-Particle Image Velocimetry (micro-PIV) and 3D reconstruction techniques. Conjugate heat transfer simulations are carried out to understand the complex thermal behaviour present in the current experimental design and to validate and compare with experimental results. The impact of tortuous geometry on flow and heat transfer in microchannels is studied systematically. The high quality experimental data provide a new perspective on flow behaviour and heat transfer performance in wavy microchannels. In addition, the stackability of channels on a plate is considered. The zigzag pathways are found to provide the greatest heat transfer intensification based on a plate structure. A significant component of the research in this thesis has been the development of experimental techniques to measure local heat transfer rates in microchannels. A two-dye laser induced fluorescence (LIF) technique using temperature sensitive particles (TSPs) is developed with promising characteristics for local temperature measurement and the capability for simultaneous measurement of temperature and velocity fields in microscale systems. The advanced experimental techniques developed in this thesis provide important tools for the investigation of thermohydraulics of various micro-devices in the field of engineering

    Experimental study of fluid flow and heat transfer in tortuous microchannels

    Get PDF
    Tortuous microchannels have attracted increasing interest due to great potential to enhance fluid mixing and heat transfer. While the fluid flow and heat transfer in wavy microchannels have been studied extensively in a numerical fashion, experimental studies are very limited due to the technical difficulties of making accurate measurements in micro-scale flows. This thesis provides insights into thermohydraulics of tortuous microchannels by developing experimental techniques and performing systematic visualisation and heat transfer experiments. The detailed flow patterns (including Dean vortices) and transition behaviours in wavy channels are successfully identified using Micro-Particle Image Velocimetry (micro-PIV) and 3D reconstruction techniques. Conjugate heat transfer simulations are carried out to understand the complex thermal behaviour present in the current experimental design and to validate and compare with experimental results. The impact of tortuous geometry on flow and heat transfer in microchannels is studied systematically. The high quality experimental data provide a new perspective on flow behaviour and heat transfer performance in wavy microchannels. In addition, the stackability of channels on a plate is considered. The zigzag pathways are found to provide the greatest heat transfer intensification based on a plate structure. A significant component of the research in this thesis has been the development of experimental techniques to measure local heat transfer rates in microchannels. A two-dye laser induced fluorescence (LIF) technique using temperature sensitive particles (TSPs) is developed with promising characteristics for local temperature measurement and the capability for simultaneous measurement of temperature and velocity fields in microscale systems. The advanced experimental techniques developed in this thesis provide important tools for the investigation of thermohydraulics of various micro-devices in the field of engineering
    corecore