2,101 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    A BERT Framework to Sentiment Analysis of Tweets

    Get PDF
    Sentiment analysis has been widely used in microblogging sites such as Twitter in recent decades, where millions of users express their opinions and thoughts because of its short and simple manner of expression. Several studies reveal the state of sentiment which does not express sentiment based on the user context because of different lengths and ambiguous emotional information. Hence, this study proposes text classification with the use of bidirectional encoder representations from transformers (BERT) for natural language processing with other variants. The experimental findings demonstrate that the combination of BERT with CNN, BERT with RNN, and BERT with BiLSTM performs well in terms of accuracy rate, precision rate, recall rate, and F1-score compared to when it was used with Word2vec and when it was used with no variant

    Adversarial Deep Learning and Security with a Hardware Perspective

    Get PDF
    Adversarial deep learning is the field of study which analyzes deep learning in the presence of adversarial entities. This entails understanding the capabilities, objectives, and attack scenarios available to the adversary to develop defensive mechanisms and avenues of robustness available to the benign parties. Understanding this facet of deep learning helps us improve the safety of the deep learning systems against external threats from adversaries. However, of equal importance, this perspective also helps the industry understand and respond to critical failures in the technology. The expectation of future success has driven significant interest in developing this technology broadly. Adversarial deep learning stands as a balancing force to ensure these developments remain grounded in the real-world and proceed along a responsible trajectory. Recently, the growth of deep learning has begun intersecting with the computer hardware domain to improve performance and efficiency for resource constrained application domains. The works investigated in this dissertation constitute our pioneering efforts in migrating adversarial deep learning into the hardware domain alongside its parent field of research

    Analog Photonics Computing for Information Processing, Inference and Optimisation

    Full text link
    This review presents an overview of the current state-of-the-art in photonics computing, which leverages photons, photons coupled with matter, and optics-related technologies for effective and efficient computational purposes. It covers the history and development of photonics computing and modern analogue computing platforms and architectures, focusing on optimization tasks and neural network implementations. The authors examine special-purpose optimizers, mathematical descriptions of photonics optimizers, and their various interconnections. Disparate applications are discussed, including direct encoding, logistics, finance, phase retrieval, machine learning, neural networks, probabilistic graphical models, and image processing, among many others. The main directions of technological advancement and associated challenges in photonics computing are explored, along with an assessment of its efficiency. Finally, the paper discusses prospects and the field of optical quantum computing, providing insights into the potential applications of this technology.Comment: Invited submission by Journal of Advanced Quantum Technologies; accepted version 5/06/202

    Transformer-Based Learned Optimization

    Full text link
    We propose a new approach to learned optimization where we represent the computation of an optimizer's update step using a neural network. The parameters of the optimizer are then learned by training on a set of optimization tasks with the objective to perform minimization efficiently. Our innovation is a new neural network architecture, Optimus, for the learned optimizer inspired by the classic BFGS algorithm. As in BFGS, we estimate a preconditioning matrix as a sum of rank-one updates but use a Transformer-based neural network to predict these updates jointly with the step length and direction. In contrast to several recent learned optimization-based approaches, our formulation allows for conditioning across the dimensions of the parameter space of the target problem while remaining applicable to optimization tasks of variable dimensionality without retraining. We demonstrate the advantages of our approach on a benchmark composed of objective functions traditionally used for the evaluation of optimization algorithms, as well as on the real world-task of physics-based visual reconstruction of articulated 3d human motion.Comment: Accepted to the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023 (CVPR) in Vancouver, Canad

    Geometric Data Analysis: Advancements of the Statistical Methodology and Applications

    Get PDF
    Data analysis has become fundamental to our society and comes in multiple facets and approaches. Nevertheless, in research and applications, the focus was primarily on data from Euclidean vector spaces. Consequently, the majority of methods that are applied today are not suited for more general data types. Driven by needs from fields like image processing, (medical) shape analysis, and network analysis, more and more attention has recently been given to data from non-Euclidean spaces–particularly (curved) manifolds. It has led to the field of geometric data analysis whose methods explicitly take the structure (for example, the topology and geometry) of the underlying space into account. This thesis contributes to the methodology of geometric data analysis by generalizing several fundamental notions from multivariate statistics to manifolds. We thereby focus on two different viewpoints. First, we use Riemannian structures to derive a novel regression scheme for general manifolds that relies on splines of generalized Bézier curves. It can accurately model non-geodesic relationships, for example, time-dependent trends with saturation effects or cyclic trends. Since Bézier curves can be evaluated with the constructive de Casteljau algorithm, working with data from manifolds of high dimensions (for example, a hundred thousand or more) is feasible. Relying on the regression, we further develop a hierarchical statistical model for an adequate analysis of longitudinal data in manifolds, and a method to control for confounding variables. We secondly focus on data that is not only manifold- but even Lie group-valued, which is frequently the case in applications. We can only achieve this by endowing the group with an affine connection structure that is generally not Riemannian. Utilizing it, we derive generalizations of several well-known dissimilarity measures between data distributions that can be used for various tasks, including hypothesis testing. Invariance under data translations is proven, and a connection to continuous distributions is given for one measure. A further central contribution of this thesis is that it shows use cases for all notions in real-world applications, particularly in problems from shape analysis in medical imaging and archaeology. We can replicate or further quantify several known findings for shape changes of the femur and the right hippocampus under osteoarthritis and Alzheimer's, respectively. Furthermore, in an archaeological application, we obtain new insights into the construction principles of ancient sundials. Last but not least, we use the geometric structure underlying human brain connectomes to predict cognitive scores. Utilizing a sample selection procedure, we obtain state-of-the-art results

    Canonical Algebraic Generators in Automata Learning

    Get PDF
    Many methods for the verification of complex computer systems require the existence of a tractable mathematical abstraction of the system, often in the form of an automaton. In reality, however, such a model is hard to come up with, in particular manually. Automata learning is a technique that can automatically infer an automaton model from a system -- by observing its behaviour. The majority of automata learning algorithms is based on the so-called L* algorithm. The acceptor learned by L* has an important property: it is canonical, in the sense that, it is, up to isomorphism, the unique deterministic finite automaton of minimal size accepting a given regular language. Establishing a similar result for other classes of acceptors, often with side-effects, is of great practical importance. Non-deterministic finite automata, for instance, can be exponentially more succinct than deterministic ones, allowing verification to scale. Unfortunately, identifying a canonical size-minimal non-deterministic acceptor of a given regular language is in general not possible: it can happen that a regular language is accepted by two non-isomorphic non-deterministic finite automata of minimal size. In particular, it thus is unclear which one of the automata should be targeted by a learning algorithm. In this thesis, we further explore the issue and identify (sub-)classes of acceptors that admit canonical size-minimal representatives. In more detail, the contributions of this thesis are three-fold. First, we expand the automata (learning) theory of Guarded Kleene Algebra with Tests (GKAT), an efficiently decidable logic expressive enough to model simple imperative programs. In particular, we present GL*, an algorithm that learns the unique size-minimal GKAT automaton for a given deterministic language, and prove that GL* is more efficient than an existing variation of L*. We implement both algorithms in OCaml, and compare them on example programs. Second, we present a category-theoretical framework based on generators, bialgebras, and distributive laws, which identifies, for a wide class of automata with side-effects in a monad, canonical target models for automata learning. Apart from recovering examples from the literature, we discover a new canonical acceptor of regular languages, and present a unifying minimality result. Finally, we show that the construction underlying our framework is an instance of a more general theory. First, we see that deriving a minimal bialgebra from a minimal coalgebra can be realized by applying a monad on a category of subobjects with respect to an epi-mono factorisation system. Second, we explore the abstract theory of generators and bases for algebras over a monad: we discuss bases for bialgebras, the product of bases, generalise the representation theory of linear maps, and compare our ideas to a coalgebra-based approach

    The global problem of image-based sexual abuse considered in the Irish context: An evaluation of existing legal responses with a focus on effective enforcement in the online environment

    Get PDF
    The recording and/or sharing of intimate images without consent – known as image-based sexual abuse (IBSA) – has received significant legislative attention in recent years. Various approaches to addressing the harm of IBSA have been adopted internationally and this thesis identifies a need to consider the Irish response to IBSA. Adopting a victim-centred approach, this thesis derives lessons from the Australian experience where an innovative system of redress and enforcement has been developed through the establishment of a regulatory structure supported by a statutory body, the Office of the eSafety Commissioner (OESC). The immediate importance of this research is clear. Remediating harm in the world of the internet where both identities and jurisdictional boundaries are blurred is challenging. This thesis investigates the effectiveness of the OESC in practice in order to better assess the Irish approach and the potential of the Irish Online Safety Commissioner to provide adequate redress for victims of IBSA in Ireland. Through the use of doctrinal and comparative analysis and the conducting of interviews with key stakeholders in the area of online regulation, this thesis identifies the key needs of victims of IBSA and identifies numerous mechanisms designed to address those needs, at least in part. This victim-centred approach underlies the in-depth analysis of the Australian system and is used to inform the policy recommendations made in this thesis. Particular attention is afforded to whether the Irish approach should include an individual complaints mechanism. By drawing inferences between the Irish and Australian situations, a clearer picture is drawn as to the optimum remit, structure, functions, and powers of the Irish OSC in order to effectively address the harms of IBSA

    Design of continuous-time recurrent neural networks with piecewise-linear activation function for generation of prescribed sequences of bipolar vectors

    Get PDF
    A recurrent neural network (RNN) can generate a sequence of patterns as the temporal evolution of the output vector. This paper focuses on a continuous-time RNN model with a piecewise-linear activation function that has neither external inputs nor hidden neurons, and studies the problem of finding the parameters of the model so that it generates a given sequence of bipolar vectors. First, a sufficient condition for the model to generate the desired sequence is derived, which is expressed as a system of linear inequalities in the parameters. Next, three approaches to finding solutions of the system of linear inequalities are proposed: One is formulated as a convex quadratic programming problem and others are linear programming problems. Then, two types of sequences of bipolar vectors that can be generated by the model are presented. Finally, the case where the model generates a periodic sequence of bipolar vectors is considered, and a sufficient condition for the trajectory of the state vector to converge to a limit cycle is provided
    • …
    corecore