2,640 research outputs found

    Coordinated aircraft and ship surveys for determining impact of river inputs on great lakes waters. Remote sensing results

    Get PDF
    The remote sensing results of aircraft and ship surveys for determining the impact of river effluents on Great Lakes waters are presented. Aircraft multi-spectral scanner data were acquired throughout the spring and early summer of 1976 at five locations: the West Basin of Lake Erie, Genesee River - Lake Ontario, Menomonee River - Lake Michigan, Grand River - Lake Michigan, and Nemadji River - Lake Superior. Multispectral scanner data and ship surface sample data are correlated resulting in 40 contour plots showing large-scale distributions of parameters such as total suspended solids, turbidity, Secchi depth, nutrients, salts, and dissolved oxygen. The imagery and data analysis are used to determine the transport and dispersion of materials from the river discharges, especially during spring runoff events, and to evaluate the relative effects of river input, resuspension, and shore erosion. Twenty-five LANDSAT satellite images of the study sites are also included in the analysis. Examples of the use of remote sensing data in quantitatively estimating total particulate loading in determining water types, in assessing transport across international boundaries, and in supporting numerical current modeling are included. The importance of coordination of aircraft and ship lake surveys is discussed, including the use of telefacsimile for the transmission of imagery

    Data-Driven Air Quality and Environmental Evaluation for Cattle Farms

    Get PDF
    The expansion of agricultural practices and the raising of animals are key contributors to air pollution. Cattle farms contain hazardous gases, so we developed a cattle farm air pollution analyzer to count the number of cattle and provide comprehensive statistics on different air pollutant concentrations based on severity over various time periods. The modeling was performed in two parts: the first stage focused on object detection using satellite data of farm images to identify and count the number of cattle; the second stage predicted the next hour air pollutant concentration of the seven cattle farm air pollutants considered. The output from the second stage was then visualized based on severity, and analytics were performed on the historical data. The visualization illustrates the relationship between cattle count and air pollutants, an important factor for analyzing the pollutant concentration trend. We proposed the models Detectron2, YOLOv4, RetinaNet, and YOLOv5 for the first stage, and LSTM (single/multi lag), CNN-LSTM, and Bi-LSTM for the second stage. YOLOv5 performed best in stage one with an average precision of 0.916 and recall of 0.912, with the average precision and recall for all models being above 0.87. For stage two, CNN-LSTM performed well with an MAE of 3.511 and an MAPE of 0.016, while a stacked model had an MAE of 5.010 and an MAPE of 0.023

    Intercontinental transport of nitrogen oxide pollution plumes

    Get PDF
    We describe the first satellite observation of intercontinental transport of nitrogen oxides emitted by power plants, verified by simulations with a particle tracer model. The analysis of such episodes shows that anthropogenic NO<sub>x</sub> plumes may influence the atmospheric chemistry thousands of kilometers away from its origin, as well as the ocean they traverse due to nitrogen fertilization. This kind of monitoring became possible by applying an improved algorithm to extract the tropospheric fraction of NO<sub>2</sub> from the spectral data coming from the GOME instrument.<br> <br> As an example we show the observation of NO<sub>2</sub> in the time period 4--14 May, 1998, from the South African Plateau to Australia which was possible due to favourable weather conditions during that time period which availed the satellite measurement. This episode was also simulated with the Lagrangian particle dispersion model FLEXPART which uses NO<sub>x</sub> emissions taken from an inventory for industrial emissions in South Africa and is driven with analyses from the European Centre for Medium-Range Weather Forecasts. Additionally lightning emissions were taken into account by utilizing Lightning Imaging Sensor data. Lightning was found to contribute probably not more than 25% of the resulting concentrations. Both, the measured and simulated emission plume show matching patterns while traversing the Indian Ocean to Australia and show great resemblance to the aerosol and CO<sub>2</sub> transport observed by Piketh et al. (2000)

    Journal of environmental geography : Vol. XIII. No 3-4.

    Get PDF

    Stratospheric measurement requirements and satellite-borne remote sensing capabilities

    Get PDF
    The capabilities of specific NASA remote sensing systems to provide appropriate measurements of stratospheric parameters for potential user needs were assessed. This was used to evaluate the capabilities of the remote sensing systems to perform global monitoring of the stratosphere. The following conclusions were reached: (1) The performance of current remote stratospheric sensors, in some cases, compares quite well with identified measurement requirements. Their ability to measure other species has not been demonstrated. (2) None of the current, in-situ methods have the capability to satisfy the requirements for global monitoring and the temporal constraints derived from the users needs portion of the study. (3) Existing, non-remote techniques will continue to play an important role in stratospheric investigations for both corroboration of remotely collected data and in the evolutionary development of future remote sensors

    Averaging Atmospheric Gas Concentration Data using Wasserstein Barycenters

    Full text link
    Hyperspectral satellite images report greenhouse gas concentrations worldwide on a daily basis. While taking simple averages of these images over time produces a rough estimate of relative emission rates, atmospheric transport means that simple averages fail to pinpoint the source of these emissions. We propose using Wasserstein barycenters coupled with weather data to average gas concentration data sets and better concentrate the mass around significant sources

    Dynamics and energy flows in the Baltic ecosystems: Remote sensing

    Get PDF
    There are no author-identified significant results in this report

    Air Quality over China

    Get PDF
    The strong economic growth in China in recent decades, together with meteorological factors, has resulted in serious air pollution problems, in particular over large industrialized areas with high population density. To reduce the concentrations of pollutants, air pollution control policies have been successfully implemented, resulting in the gradual decrease of air pollution in China during the last decade, as evidenced from both satellite and ground-based measurements. The aims of the Dragon 4 project “Air quality over China” were the determination of trends in the concentrations of aerosols and trace gases, quantification of emissions using a top-down approach and gain a better understanding of the sources, transport and underlying processes contributing to air pollution. This was achieved through (a) satellite observations of trace gases and aerosols to study the temporal and spatial variability of air pollutants; (b) derivation of trace gas emissions from satellite observations to study sources of air pollution and improve air quality modeling; and (c) study effects of haze on air quality. In these studies, the satellite observations are complemented with ground-based observations and modeling

    Preliminary assessment of the environmental baseline in the Fylde, Lancashire

    Get PDF
    This report presents the collated preliminary results from the British Geological Survey (BGS) led project Science-based environmental baseline monitoring associated with shale gas development in the Fylde, Lancashire. The project has been funded by a combination of BGS National Capability funding, in-kind contributions from project partners and a grant awarded by the Department of Business Energy and Investment Strategy (BEIS). It complements an on-going project, in which similar activities are being carried out, in the Vale of Pickering, North Yorkshire. Further information on the projects can be found on the BGS website: www.bgs.ac.uk. The project has initiated a wide-ranging environmental baseline monitoring programme that includes water quality (groundwater and surface water), seismicity, ground motion, atmospheric composition (greenhouse gases and air quality), soil gas and radon in air (indoors and outdoors). The motivation behind the project(s) was to establish independent monitoring in the area around the proposed shale gas hydraulic fracturing sites in the Fylde, Lancashire (Cuadrilla Resources Ltd) before any shale gas operations take place. As part of the project, instrumentation has been deployed to measure, in real-time or near real-time, a range of environmental variables (water quality, seismicity, atmospheric composition). These data are being displayed on the project’s web site (www.bgs.ac.uk/lancashire). Additional survey, sampling and monitoring has also been carried out through a co-ordinated programme of fieldwork and laboratory analysis, which has included installation of new monitoring infrastructure, to allow compilation of one of the most comprehensive environmental datasets in the UK. The monitoring programme is continuing. However, there are already some very important findings emerging from the limited datasets which should be taken into account when developing future monitoring strategy, policy and regulation. The information is not only relevant to Lancashire but will be applicable more widely in the UK and internationally. Although shale gas operations in other parts of the world are well-established, there is a paucity of good baseline data and effective guidance on monitoring. The project will also allow the experience gained, and the scientifically-robust findings to be used, to develop and establish effective environmental monitoring strategies for shale gas and similar industrial activities
    corecore