5,878 research outputs found

    Activity Driven Weakly Supervised Object Detection

    Full text link
    Weakly supervised object detection aims at reducing the amount of supervision required to train detection models. Such models are traditionally learned from images/videos labelled only with the object class and not the object bounding box. In our work, we try to leverage not only the object class labels but also the action labels associated with the data. We show that the action depicted in the image/video can provide strong cues about the location of the associated object. We learn a spatial prior for the object dependent on the action (e.g. "ball" is closer to "leg of the person" in "kicking ball"), and incorporate this prior to simultaneously train a joint object detection and action classification model. We conducted experiments on both video datasets and image datasets to evaluate the performance of our weakly supervised object detection model. Our approach outperformed the current state-of-the-art (SOTA) method by more than 6% in mAP on the Charades video dataset.Comment: CVPR'19 camera read

    Tissue Phenomics for prognostic biomarker discovery in low- and intermediate-risk prostate cancer

    Get PDF
    Tissue Phenomics is the discipline of mining tissue images to identify patterns that are related to clinical outcome providing potential prognostic and predictive value. This involves the discovery process from assay development, image analysis, and data mining to the final interpretation and validation of the findings. Importantly, this process is not linear but allows backward steps and optimization loops over multiple sub-processes. We provide a detailed description of the Tissue Phenomics methodology while exemplifying each step on the application of prostate cancer recurrence prediction. In particular, we automatically identified tissue-based biomarkers having significant prognostic value for low-and intermediate-risk prostate cancer patients (Gleason scores 6-7b) after radical prostatectomy. We found that promising phenes were related to CD8(+) and CD68(+) cells in the microenvironment of cancerous glands in combination with the local micro-vascularization. Recurrence prediction based on the selected phenes yielded accuracies up to 83% thereby clearly outperforming prediction based on the Gleason score. Moreover, we compared different machine learning algorithms to combine the most relevant phenes resulting in increased accuracies of 88% for tumor progression prediction. These findings will be of potential use for future prognostic tests for prostate cancer patients and provide a proof-of-principle of the Tissue Phenomics approach

    Text-based Editing of Talking-head Video

    No full text
    Editing talking-head video to change the speech content or to remove filler words is challenging. We propose a novel method to edit talking-head video based on its transcript to produce a realistic output video in which the dialogue of the speaker has been modified, while maintaining a seamless audio-visual flow (i.e. no jump cuts). Our method automatically annotates an input talking-head video with phonemes, visemes, 3D face pose and geometry, reflectance, expression and scene illumination per frame. To edit a video, the user has to only edit the transcript, and an optimization strategy then chooses segments of the input corpus as base material. The annotated parameters corresponding to the selected segments are seamlessly stitched together and used to produce an intermediate video representation in which the lower half of the face is rendered with a parametric face model. Finally, a recurrent video generation network transforms this representation to a photorealistic video that matches the edited transcript. We demonstrate a large variety of edits, such as the addition, removal, and alteration of words, as well as convincing language translation and full sentence synthesis

    Precision Automation of Cell Type Classification and Sub-Cellular Fluorescence Quantification from Laser Scanning Confocal Images

    Get PDF
    While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1) segment radial plant organs into individual cells, 2) classify cells into cell type categories based upon random forest classification, 3) divide each cell into sub-regions, and 4) quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types

    Development of Imaging Mass Spectrometry Analysis of Lipids in Biological and Clinically Relevant Applications

    Get PDF
    La spectromĂ©trie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employĂ©e dans plusieurs domaines et peut analyser des mĂ©langes complexes. L’imagerie par spectromĂ©trie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectromĂ©trie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions dĂ©tectĂ©s. Jusqu’à prĂ©sent, les Ă©chantillons les plus Ă©tudiĂ©s en IMS sont des sections tissulaires vĂ©gĂ©tales ou animales. Parmi les molĂ©cules couramment analysĂ©es par l’IMS, les lipides ont suscitĂ© beaucoup d'intĂ©rĂȘt. Les lipides sont impliquĂ©s dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rĂŽles, comme celui de rĂ©guler des Ă©vĂ©nements cellulaires. ConsidĂ©rant l’implication des lipides dans la biologie et la capacitĂ© du MALDI IMS Ă  les analyser, nous avons dĂ©veloppĂ© des stratĂ©gies analytiques pour la manipulation des Ă©chantillons et l’analyse de larges ensembles de donnĂ©es lipidiques. La dĂ©gradation des lipides est trĂšs importante dans l’industrie alimentaire. De la mĂȘme façon, les lipides des sections tissulaires risquent de se dĂ©grader. Leurs produits de dĂ©gradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espĂšces lipidiques pouvant nuire Ă  la prĂ©cision des mesures d’abondance. Puisque les lipides oxydĂ©s sont aussi des mĂ©diateurs importants dans le dĂ©veloppement de plusieurs maladies, leur rĂ©elle prĂ©servation devient donc critique. Dans les Ă©tudes multi-institutionnelles oĂč les Ă©chantillons sont souvent transportĂ©s d’un emplacement Ă  l’autre, des protocoles adaptĂ©s et validĂ©s, et des mesures de dĂ©gradation sont nĂ©cessaires. Nos principaux rĂ©sultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydĂ©s et des lysophospholipides dans des conditions ambiantes, une diminution de la prĂ©sence des lipides ayant des acides gras insaturĂ©s et un effet inhibitoire sur ses phĂ©nomĂšnes de la conservation des sections au froid sous N2. A tempĂ©rature et atmosphĂšre ambiantes, les phospholipides sont oxydĂ©s sur une Ă©chelle de temps typique d’une prĂ©paration IMS normale (~30 minutes). Les phospholipides sont aussi dĂ©composĂ©s en lysophospholipides sur une Ă©chelle de temps de plusieurs jours. La validation d’une mĂ©thode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athĂ©rosclĂ©rose est une maladie cardiovasculaire induite par l’accumulation de matĂ©riel cellulaire sur la paroi artĂ©rielle. Puisque l’athĂ©rosclĂ©rose est un phĂ©nomĂšne en trois dimension (3D), l'IMS 3D en sĂ©rie devient donc utile, d'une part, car elle a la capacitĂ© Ă  localiser les molĂ©cules sur la longueur totale d’une plaque athĂ©romateuse et, d'autre part, car elle peut identifier des mĂ©canismes molĂ©culaires du dĂ©veloppement ou de la rupture des plaques. l'IMS 3D en sĂ©rie fait face Ă  certains dĂ©fis spĂ©cifiques, dont beaucoup se rapportent simplement Ă  la reconstruction en 3D et Ă  l’interprĂ©tation de la reconstruction molĂ©culaire en temps rĂ©el. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athĂ©rosclĂ©rose d’une carotide humaine et d’un modĂšle murin d’athĂ©rosclĂ©rose, nous avons Ă©laborĂ© des mĂ©thodes «open-source» pour la reconstruction des donnĂ©es de l’IMS en 3D. Notre mĂ©thodologie fournit un moyen d’obtenir des visualisations de haute qualitĂ© et dĂ©montre une stratĂ©gie pour l’interprĂ©tation rapide des donnĂ©es de l’IMS 3D par la segmentation multivariĂ©e. L’analyse d’aortes d’un modĂšle murin a Ă©tĂ© le point de dĂ©part pour le dĂ©veloppement des mĂ©thodes car ce sont des Ă©chantillons mieux contrĂŽlĂ©s. En corrĂ©lant les donnĂ©es acquises en mode d’ionisation positive et nĂ©gative, l’IMS en 3D a permis de dĂ©montrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en Ă©vidence une localisation diffĂ©rentielle des acides gras libres, du cholestĂ©rol, des esters du cholestĂ©rol et des triglycĂ©rides. La segmentation multivariĂ©e des signaux lipidiques suite Ă  l’analyse par IMS d’une carotide humaine dĂ©montre une histologie molĂ©culaire corrĂ©lĂ©e avec le degrĂ© de stĂ©nose de l’artĂšre. Ces recherches aident Ă  mieux comprendre la complexitĂ© biologique de l’athĂ©rosclĂ©rose et peuvent possiblement prĂ©dire le dĂ©veloppement de certains cas cliniques. La mĂ©tastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie mĂ©tastatique du cancer colorectal primaire, un des cancers le plus frĂ©quent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectuĂ©s avec l’histopathologie avec une marge d’erreur. Nous avons utilisĂ© l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures molĂ©culaires, nous avons pu dĂ©terminer un score histopathologique quantitatif et objectif et qui corrĂšle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifiĂ© des espĂšces lipidiques individuelles qui sont discriminants des diffĂ©rentes histologies du CRCLM et qui peuvent potentiellement ĂȘtre utilisĂ©es comme des biomarqueurs pour la dĂ©termination de la rĂ©ponse Ă  la thĂ©rapie. Plus spĂ©cifiquement, nous avons trouvĂ© une sĂ©rie de plasmalogĂšnes et sphingolipides qui permettent de distinguer deux diffĂ©rents types de nĂ©crose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associĂ© avec la rĂ©ponse aux traitements chimiothĂ©rapiques, alors que l’UN est associĂ© au fonctionnement normal de la tumeur.Mass spectrometry is the measurement of the mass over charge ratio of ions. It is broadly applicable and capable of analyzing complex mixtures. Imaging mass spectrometry (IMS) is a branch of mass spectrometry that analyses ions across a surface while conserving their spatial organization on said surface. At this juncture, the most studied IMS samples are thin tissue sections from plants and animals. Among the molecules routinely imaged by IMS, lipids have generated significant interest. Lipids are important in disease and normal cell function as they form cell membranes and act as signaling molecules for cellular events among many other roles. Considering the potential of lipids in biological and clinical applications and the capability of MALDI to ionize lipids, we developed analytical strategies for the handling of samples and analysis of large lipid MALDI IMS datasets. Lipid degradation is massively important in the food industry with oxidized products producing a bad smell and taste. Similarly, lipids in thin tissue sections cut from whole tissues are subject to degradation, and their degradation products can introduce IMS artifacts and the loss of normally occurring species to degradation can skew accuracy in IMS measures of abundance. Oxidized lipids are also known to be important mediators in the progression of several diseases and their accurate preservation is critical. As IMS studies become multi-institutional and collaborations lead to sample exchange, the need for validated protocols and measures of degradation are necessary. We observed the products of lipid degradation in tissue sections from multiple mouse organs and reported on the conditions promoting and inhibiting their presence as well as the timeline of degradation. Our key findings were the increase in oxidized phospholipids and lysophospholipids from degradation at ambient conditions, the decrease in the presence of lipids containing unsaturations on their fatty acyl chains, and the inhibition of degradation by matrix coating and cold storage of sections under N2 atmosphere. At ambient atmospheric and temperature, lipids degraded into oxidized phospholipids on the time-scale of a normal IMS experiment sample preparation (within 30 min). Lipids then degraded into lysophospholipids’ on a time scale on the order of several days. Validation of sample handling is especially important when a greater number of samples are to be analyzed either through a cohort of samples, or analysis of multiple sections from a single tissue as in serial 3D IMS. Atherosclerosis is disease caused by accumulation of cellular material at the arterial wall. The accumulation implanted in the cell wall grows and eventually occludes the blood vessel, or causes a stroke. Atherosclerosis is a 3D phenomenon and serial 3D IMS is useful for its ability to localize molecules throughout the length of a plaque and help to define the molecular mechanisms of plaque development and rupture. Serial 3D IMS has many challenges, many of which are simply a matter of producing 3D reconstructions and interpreting them in a timely fashion. In this aim and using analysis of lipids from atherosclerotic plaques from a human carotid and mouse aortic sinuses, we described 3D reconstruction methods using open-source software. Our methodology provides means to obtain high quality visualizations and demonstrates strategies for rapid interpretation of 3D IMS datasets through multivariate segmentation. Mouse aorta from model animals provided a springboard for developing the methods on lower risk samples with less variation with interesting molecular results. 3D MALDI IMS showed localized phospholipid accumulation in the mouse aortic sinuses with correlation between separate positive and negative ionization datasets. Silver-assisted LDI imaging presented differential localization of free fatty acids, cholesterol / cholesterol esters, and triglycerides. The human carotid’s 3D segmentation shows molecular histologies (spatial groupings of imaging pixels with similar spectral fingerprints) correlating to the degree of arterial stenosis. Our results outline the potential for 3D IMS in atherosclerotic research. Molecular histologies and their 3D spatial organization, obtained from the IMS techniques used herein, may predict high-risk features, and particularly identify areas of plaque that have higher-risk of rupture. These investigations would help further unravel the biological complexities of atherosclerosis, and predict clinical outcomes. Colorectal cancer liver metastasis (CRCLM) is the metastatic disease of primary colorectal cancer, one of the most common cancers worldwide. CRC is a cancer of the endothelial lining of the colon or rectum. CRC itself is often cured with surgery, while CRCLM is more deadly and treated with chemotherapy with more limited efficacy. Prognosticating and assessment of tumors is performed using classical histopathology with a margin of error. We have used lipid IMS to identify the histological compartments and extract their signatures. Using these IMS signatures we obtained a quantitative and objective histopathological score that correlates with prognosis. Additionally, by dissecting out the lipid signatures we have identified single lipid moieties that are unique to different histologies that could potentially be used as new biomarkers for assessing response to therapy. Particularly, we found a series of plasmalogen and sphingolipid species that differentiate infarct-like and usual necrosis, typical of chemotherapeutic response and normal tumor function, respectively

    TRECVID 2004 - an overview

    Get PDF
    • 

    corecore