78 research outputs found

    Bottom-up Object Segmentation for Visual Recognition

    Get PDF
    Automatic recognition and segmentation of objects in images is a central open problem in computer vision. Most previous approaches have pursued either sliding-window object detection or dense classification of overlapping local image patches. Differently, the framework introduced in this thesis attempts to identify the spatial extent of objects prior to recognition, using bottom-up computational processes and mid-level selection cues. After a set of plausible object hypotheses is identified, a sequential recognition process is executed, based on continuous estimates of the spatial overlap between the image segment hypotheses and each putative class. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. It is show that CPMC significantly outperforms the state of the art for low-level segmentation in the PASCAL VOC 2009 and 2010 datasets. Results beyond the current state of the art for image classification, object detection and semantic segmentation are also demonstrated in a number of challenging datasets including Caltech-101, ETHZ-Shape as well as PASCAL VOC 2009-11. These results suggest that a greater emphasis on grouping and image organization may be valuable for making progress in high-level tasks such as object recognition and scene understanding

    Entity-Oriented Search

    Get PDF
    This open access book covers all facets of entity-oriented search—where “search” can be interpreted in the broadest sense of information access—from a unified point of view, and provides a coherent and comprehensive overview of the state of the art. It represents the first synthesis of research in this broad and rapidly developing area. Selected topics are discussed in-depth, the goal being to establish fundamental techniques and methods as a basis for future research and development. Additional topics are treated at a survey level only, containing numerous pointers to the relevant literature. A roadmap for future research, based on open issues and challenges identified along the way, rounds out the book. The book is divided into three main parts, sandwiched between introductory and concluding chapters. The first two chapters introduce readers to the basic concepts, provide an overview of entity-oriented search tasks, and present the various types and sources of data that will be used throughout the book. Part I deals with the core task of entity ranking: given a textual query, possibly enriched with additional elements or structural hints, return a ranked list of entities. This core task is examined in a number of different variants, using both structured and unstructured data collections, and numerous query formulations. In turn, Part II is devoted to the role of entities in bridging unstructured and structured data. Part III explores how entities can enable search engines to understand the concepts, meaning, and intent behind the query that the user enters into the search box, and how they can provide rich and focused responses (as opposed to merely a list of documents)—a process known as semantic search. The final chapter concludes the book by discussing the limitations of current approaches, and suggesting directions for future research. Researchers and graduate students are the primary target audience of this book. A general background in information retrieval is sufficient to follow the material, including an understanding of basic probability and statistics concepts as well as a basic knowledge of machine learning concepts and supervised learning algorithms

    Schema-aware keyword search on linked data

    Get PDF
    Keyword search is a popular technique for querying the ever growing repositories of RDF graph data on the Web. This is due to the fact that the users do not need to master complex query languages (e.g., SQL, SPARQL) and they do not need to know the underlying structure of the data on the Web to compose their queries. Keyword search is simple and flexible. However, it is at the same time ambiguous since a keyword query can be interpreted in different ways. This feature of keyword search poses at least two challenges: (a) identifying relevant results among a multitude of candidate results, and (b) dealing with the performance scalability issue of the query evaluation algorithms. In the literature, multiple schema-unaware approaches are proposed to cope with the above challenges. Some of them identify as relevant results only those candidate results which maintain the keyword instances in close proximity. Other approaches filter out irrelevant results using their structural characteristics or rank and top-k process the retrieved results based on statistical information about the data. In any case, these approaches cannot disambiguate the query to identify the intent of the user and they cannot scale satisfactorily when the size of the data and the number of the query keywords grow. In recent years, different approaches tried to exploit the schema (structural summary) of the RDF (Resource Description Framework) data graph to address the problems above. In this context, an original hierarchical clustering technique is introduced in this dissertation. This approach clusters the results based on a semantic interpretation of the keyword instances and takes advantage of relevance feedback from the user. The clustering hierarchy uses pattern graphs which are structured queries and clustering together result graphs with the same structure. Pattern graphs represent possible interpretations for the keyword query. By navigating though the hierarchy the user can select the pattern graph which is relevant to her intent. Nevertheless, structural summaries are approximate representations of the data and, therefore, might return empty answers or miss results which are relevant to the user intent. To address this issue, a novel approach is presented which combines the use of the structural summary and the user feedback with a relaxation technique for pattern graphs to extract additional results potentially of interest to the user. Query caching and multi-query optimization techniques are leveraged for the efficient evaluation of relaxed pattern graphs. Although the approaches which consider the structural summary of the data graph are promising, they require interaction with the user. It is claimed in this dissertation that without additional information from the user, it is not possible to produce results of high quality from keyword search on RDF data with the existing techniques. In this regard, an original keyword query language on RDF data is introduced which allows the user to convey his intention flexibly and effortlessly by specifying cohesive keyword groups. A cohesive group of keywords in a query indicates that its keywords should form a cohesive unit in the query results. It is experimentally demonstrated that cohesive keyword queries improve the result quality effectively and prune the search space of the pattern graphs efficiently compared to traditional keyword queries. Most importantly, these benefits are achieved while retaining the simplicity and the convenience of traditional keyword search. The last issue addressed in this dissertation is the diversification problem for keyword search on RDF data. The goal of diversification is to trade off relevance and diversity in the results set of a keyword query in order to minimize the dissatisfaction of the average user. Novel metrics are developed for assessing relevance and diversity along with techniques for the generation of a relevant and diversified set of query interpretations for a keyword query on an RDF data graph. Experimental results show the effectiveness of the metrics and the efficiency of the approach

    Visual object category discovery in images and videos

    Get PDF
    textThe current trend in visual recognition research is to place a strict division between the supervised and unsupervised learning paradigms, which is problematic for two main reasons. On the one hand, supervised methods require training data for each and every category that the system learns; training data may not always be available and is expensive to obtain. On the other hand, unsupervised methods must determine the optimal visual cues and distance metrics that distinguish one category from another to group images into semantically meaningful categories; however, for unlabeled data, these are unknown a priori. I propose a visual category discovery framework that transcends the two paradigms and learns accurate models with few labeled exemplars. The main insight is to automatically focus on the prevalent objects in images and videos, and learn models from them for category grouping, segmentation, and summarization. To implement this idea, I first present a context-aware category discovery framework that discovers novel categories by leveraging context from previously learned categories. I devise a novel object-graph descriptor to model the interaction between a set of known categories and the unknown to-be-discovered categories, and group regions that have similar appearance and similar object-graphs. I then present a collective segmentation framework that simultaneously discovers the segmentations and groupings of objects by leveraging the shared patterns in the unlabeled image collection. It discovers an ensemble of representative instances for each unknown category, and builds top-down models from them to refine the segmentation of the remaining instances. Finally, building on these techniques, I show how to produce compact visual summaries for first-person egocentric videos that focus on the important people and objects. The system leverages novel egocentric and high-level saliency features to predict important regions in the video, and produces a concise visual summary that is driven by those regions. I compare against existing state-of-the-art methods for category discovery and segmentation on several challenging benchmark datasets. I demonstrate that we can discover visual concepts more accurately by focusing on the prevalent objects in images and videos, and show clear advantages of departing from the status quo division between the supervised and unsupervised learning paradigms. The main impact of my thesis is that it lays the groundwork for building large-scale visual discovery systems that can automatically discover visual concepts with minimal human supervision.Electrical and Computer Engineerin

    Motion and emotion : Semantic knowledge for hollywood film indexing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Relating Dependent Terms in Information Retrieval

    Get PDF
    Les moteurs de recherche font partie de notre vie quotidienne. Actuellement, plus d’un tiers de la population mondiale utilise l’Internet. Les moteurs de recherche leur permettent de trouver rapidement les informations ou les produits qu'ils veulent. La recherche d'information (IR) est le fondement de moteurs de recherche modernes. Les approches traditionnelles de recherche d'information supposent que les termes d'indexation sont indépendants. Pourtant, les termes qui apparaissent dans le même contexte sont souvent dépendants. L’absence de la prise en compte de ces dépendances est une des causes de l’introduction de bruit dans le résultat (résultat non pertinents). Certaines études ont proposé d’intégrer certains types de dépendance, tels que la proximité, la cooccurrence, la contiguïté et de la dépendance grammaticale. Dans la plupart des cas, les modèles de dépendance sont construits séparément et ensuite combinés avec le modèle traditionnel de mots avec une importance constante. Par conséquent, ils ne peuvent pas capturer correctement la dépendance variable et la force de dépendance. Par exemple, la dépendance entre les mots adjacents "Black Friday" est plus importante que celle entre les mots "road constructions". Dans cette thèse, nous étudions différentes approches pour capturer les relations des termes et de leurs forces de dépendance. Nous avons proposé des méthodes suivantes: ─ Nous réexaminons l'approche de combinaison en utilisant différentes unités d'indexation pour la RI monolingue en chinois et la RI translinguistique entre anglais et chinois. En plus d’utiliser des mots, nous étudions la possibilité d'utiliser bi-gramme et uni-gramme comme unité de traduction pour le chinois. Plusieurs modèles de traduction sont construits pour traduire des mots anglais en uni-grammes, bi-grammes et mots chinois avec un corpus parallèle. Une requête en anglais est ensuite traduite de plusieurs façons, et un score classement est produit avec chaque traduction. Le score final de classement combine tous ces types de traduction. Nous considérons la dépendance entre les termes en utilisant la théorie d’évidence de Dempster-Shafer. Une occurrence d'un fragment de texte (de plusieurs mots) dans un document est considérée comme représentant l'ensemble de tous les termes constituants. La probabilité est assignée à un tel ensemble de termes plutôt qu’a chaque terme individuel. Au moment d’évaluation de requête, cette probabilité est redistribuée aux termes de la requête si ces derniers sont différents. Cette approche nous permet d'intégrer les relations de dépendance entre les termes. Nous proposons un modèle discriminant pour intégrer les différentes types de dépendance selon leur force et leur utilité pour la RI. Notamment, nous considérons la dépendance de contiguïté et de cooccurrence à de différentes distances, c’est-à-dire les bi-grammes et les paires de termes dans une fenêtre de 2, 4, 8 et 16 mots. Le poids d’un bi-gramme ou d’une paire de termes dépendants est déterminé selon un ensemble des caractères, en utilisant la régression SVM. Toutes les méthodes proposées sont évaluées sur plusieurs collections en anglais et/ou chinois, et les résultats expérimentaux montrent que ces méthodes produisent des améliorations substantielles sur l'état de l'art.Search engine has become an integral part of our life. More than one-third of world populations are Internet users. Most users turn to a search engine as the quick way to finding the information or product they want. Information retrieval (IR) is the foundation for modern search engines. Traditional information retrieval approaches assume that indexing terms are independent. However, terms occurring in the same context are often dependent. Failing to recognize the dependencies between terms leads to noise (irrelevant documents) in the result. Some studies have proposed to integrate term dependency of different types, such as proximity, co-occurrence, adjacency and grammatical dependency. In most cases, dependency models are constructed apart and then combined with the traditional word-based (unigram) model on a fixed importance proportion. Consequently, they cannot properly capture variable term dependency and its strength. For example, dependency between adjacent words “black Friday” is more important to consider than those of between “road constructions”. In this thesis, we try to study different approaches to capture term relationships and their dependency strengths. We propose the following methods for monolingual IR and Cross-Language IR (CLIR): We re-examine the combination approach by using different indexing units for Chinese monolingual IR, then propose the similar method for CLIR. In addition to the traditional method based on words, we investigate the possibility of using Chinese bigrams and unigrams as translation units. Several translation models from English words to Chinese unigrams, bigrams and words are created based on a parallel corpus. An English query is then translated in several ways, each producing a ranking score. The final ranking score combines all these types of translations. We incorporate dependencies between terms in our model using Dempster-Shafer theory of evidence. Every occurrence of a text fragment in a document is represented as a set which includes all its implied terms. Probability is assigned to such a set of terms instead of individual terms. During query evaluation phase, the probability of the set can be transferred to those of the related query, allowing us to integrate language-dependent relations to IR. We propose a discriminative language model that integrates different term dependencies according to their strength and usefulness to IR. We consider the dependency of adjacency and co-occurrence within different distances, i.e. bigrams, pairs of terms within text window of size 2, 4, 8 and 16. The weight of bigram or a pair of dependent terms in the final model is learnt according to a set of features. All the proposed methods are evaluated on several English and/or Chinese collections, and experimental results show these methods achieve substantial improvements over state-of-the-art baselines

    Machine learning algorithms for structured decision making

    Get PDF
    corecore