2,253 research outputs found

    Active contour driven by scalable local regional information on expandable kernel

    Get PDF
    An active contour that uses the pixelโ€™s intensity on a set of expandable kernels along the propagating contour for image segmentation is presented in this paper. The objective is this study is to employ the scalable kernels to attract the contour to meet the desired boundary. The key characteristics of this scheme is that the kernels gradually expand to find an objectโ€™s boundary. So this scheme could penetrate to the concave boundary more effective and efficient than some other schemes. If a Gaussian kernel is applied, it could trace the object with a blurred or smooth boundary. Moreover, the directional selectivity feature enables in capturing two edgeโ€™s types with just one initial position. Its performance showed more desirable segmentation outcomes compared to the other existing active contours using regional information when segmenting the noisy image and the non-uniform (or heterogeneous) textures. Meanwhile, the level set implementation enables topological flexibility to our active contour scheme

    Partitioning intensity inhomogeneity colour images via Saliency-based active contour

    Get PDF
    Partitioning or segmenting intensity inhomogeneity colour images is a challenging problem in computer vision and image shape analysis. Given an input image, the active contour model (ACM) which is formulated in variational framework is regularly used to partition objects in the image. A selective type of variational ACM approach is better than a global approach for segmenting specific target objects, which is useful for applications such as tumor segmentation or tissue classification in medical imaging. However, the existing selective ACMs yield unsatisfactory outcomes when performing the segmentation for colour (vector-valued) with intensity variations. Therefore, our new approach incorporates both local image fitting and saliency maps into a new variational selective ACM to tackle the problem. The euler-lagrange (EL) equations were presented to solve the proposed model. Thirty combinations of synthetic and medical images were tested. The visual observation and quantitative results show that the proposed model outshines the other existing models by average, with the accuracy of 2.23% more than the compared model and the Dice and Jaccard coefficients which were around 12.78% and 19.53% higher, respectively, than the compared model

    A micropower centroiding vision processor

    Get PDF
    Published versio

    Combining global and local information for the segmentation of MR images of the brain

    Get PDF
    Magnetic resonance imaging can provide high resolution volumetric images of the brain with exceptional soft tissue contrast. These factors allow the complex structure of the brain to be clearly visualised. This has lead to the development of quantitative methods to analyse neuroanatomical structures. In turn, this has promoted the use of computational methods to automate and improve these techniques. This thesis investigates methods to accurately segment MRI images of the brain. The use of global and local image information is considered, where global information includes image intensity distributions, means and variances and local information is based on the relationship between spatially neighbouring voxels. Methods are explored that aim to improve the classification and segmentation of MR images of the brain by combining these elements. Some common artefacts exist in MR brain images that can be seriously detrimental to image analysis methods. Methods to correct for these artifacts are assessed by exploring their effect, first with some well established classification methods and then with methods that combine global information with local information in the form of a Markov random field model. Another characteristic of MR images is the partial volume effect that occurs where signals from different tissues become mixed over the finite volume of a voxel. This effect is demonstrated and quantified using a simulation. Analysis methods that address these issues are tested on simulated and real MR images. They are also applied to study the structure of the temporal lobes in a group of patients with temporal lobe epilepsy. The results emphasise the benefits and limitations of applying these methods to a problem of this nature. The work in this thesis demonstrates the advantages of using global and local information together in the segmentation of MR brain images and proposes a generalised framework that allows this information to be combined in a flexible way

    ๋ณต๋ถ€ CT์—์„œ ๊ฐ„๊ณผ ํ˜ˆ๊ด€ ๋ถ„ํ•  ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ์‹ ์˜๊ธธ.๋ณต๋ถ€ ์ „์‚ฐํ™” ๋‹จ์ธต ์ดฌ์˜ (CT) ์˜์ƒ์—์„œ ์ •ํ™•ํ•œ ๊ฐ„ ๋ฐ ํ˜ˆ๊ด€ ๋ถ„ํ• ์€ ์ฒด์  ์ธก์ •, ์น˜๋ฃŒ ๊ณ„ํš ์ˆ˜๋ฆฝ ๋ฐ ์ถ”๊ฐ€์ ์ธ ์ฆ๊ฐ• ํ˜„์‹ค ๊ธฐ๋ฐ˜ ์ˆ˜์ˆ  ๊ฐ€์ด๋“œ์™€ ๊ฐ™์€ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ์ปจ๋ณผ๋ฃจ์…”๋„ ์ธ๊ณต ์‹ ๊ฒฝ๋ง (CNN) ํ˜•ํƒœ์˜ ๋”ฅ ๋Ÿฌ๋‹์ด ๋งŽ์ด ์ ์šฉ๋˜๋ฉด์„œ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์‹ค์ œ ์ž„์ƒ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋†’์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๊ธฐ๋Š” ์—ฌ์ „ํžˆ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ๋ฌผ์ฒด์˜ ๊ฒฝ๊ณ„๋Š” ์ „ํ†ต์ ์œผ๋กœ ์˜์ƒ ๋ถ„ํ• ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ด์šฉ๋˜์—ˆ์ง€๋งŒ, CT ์˜์ƒ์—์„œ ๊ฐ„์˜ ๋ถˆ๋ถ„๋ช…ํ•œ ๊ฒฝ๊ณ„๋ฅผ ์ถ”์ถœํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ํ˜„๋Œ€ CNN์—์„œ๋Š” ์ด๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ•  ์ž‘์—…์˜ ๊ฒฝ์šฐ, ๋ณต์žกํ•œ ํ˜ˆ๊ด€ ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋”ฅ ๋Ÿฌ๋‹์„ ์ ์šฉํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ์–‡์€ ํ˜ˆ๊ด€ ๋ถ€๋ถ„์˜ ์˜์ƒ ๋ฐ๊ธฐ ๋Œ€๋น„๊ฐ€ ์•ฝํ•˜์—ฌ ์›๋ณธ ์˜์ƒ์—์„œ ์‹๋ณ„ํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ„ ์–ธ๊ธ‰ํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ CNN๊ณผ ์–‡์€ ํ˜ˆ๊ด€์„ ํฌํ•จํ•˜๋Š” ๋ณต์žกํ•œ ๊ฐ„ ํ˜ˆ๊ด€์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ถ„ํ• ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ„ ๋ถ„ํ•  ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฐ–๋Š” CNN์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด, ๋‚ด๋ถ€์ ์œผ๋กœ ๊ฐ„ ๋ชจ์–‘์„ ์ถ”์ •ํ•˜๋Š” ๋ถ€๋ถ„์ด ํฌํ•จ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, CNN์„ ์‚ฌ์šฉํ•œ ํ•™์Šต์— ๊ฒฝ๊ณ„์„ ์˜ ๊ฐœ๋…์ด ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆ๋œ๋‹ค. ๋ชจํ˜ธํ•œ ๊ฒฝ๊ณ„๋ถ€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ์ „์ฒด ๊ฒฝ๊ณ„ ์˜์—ญ์„ CNN์— ํ›ˆ๋ จํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜๋ณต๋˜๋Š” ํ•™์Šต ๊ณผ์ •์—์„œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์ด ์Šค์Šค๋กœ ์˜ˆ์ธกํ•œ ํ™•๋ฅ ์—์„œ ๋ถ€์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ •๋œ ๋ถ€๋ถ„์  ๊ฒฝ๊ณ„๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•œ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ CNN์ด ๋‹ค๋ฅธ ์ตœ์‹  ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ์ •ํ™•๋„๊ฐ€ ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ CNN์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ๋Š” ๊ฐ„ ๋‚ด๋ถ€์˜ ๊ด€์‹ฌ ์˜์—ญ์„ ์ง€์ •ํ•˜๊ธฐ ์œ„ํ•ด ์•ž์„œ ํš๋“ํ•œ ๊ฐ„ ์˜์—ญ์„ ํ™œ์šฉํ•œ๋‹ค. ์ •ํ™•ํ•œ ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์œ„ํ•ด ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ์ถ”์ถœํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ํ™•์‹คํ•œ ํ›„๋ณด ์ ๋“ค์„ ์–ป๊ธฐ ์œ„ํ•ด, ์‚ผ์ฐจ์› ์˜์ƒ์˜ ์ฐจ์›์„ ๋จผ์ € ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์ด์ฐจ์›์œผ๋กœ ๋‚ฎ์ถ˜๋‹ค. ์ด์ฐจ์› ์˜์ƒ์—์„œ๋Š” ๋ณต์žกํ•œ ํ˜ˆ๊ด€์˜ ๊ตฌ์กฐ๊ฐ€ ๋ณด๋‹ค ๋‹จ์ˆœํ™”๋  ์ˆ˜ ์žˆ๋‹ค. ์ด์–ด์„œ, ์ด์ฐจ์› ์˜์ƒ์—์„œ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ํ˜ˆ๊ด€ ํ”ฝ์…€๋“ค์€ ์›๋ž˜์˜ ์‚ผ์ฐจ์› ๊ณต๊ฐ„์ƒ์œผ๋กœ ์—ญ ํˆฌ์˜๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ „์ฒด ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์„ ์œ„ํ•ด ์›๋ณธ ์˜์ƒ๊ณผ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ณต์žกํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‹จ์ˆœํ™”๋˜๊ณ  ์–‡์€ ํ˜ˆ๊ด€์ด ๋” ์ž˜ ๋ณด์ด๋Š” ์ด์ฐจ์› ์˜์ƒ์—์„œ ์–ป์€ ํ›„๋ณด ์ ๋“ค์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์–‡์€ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ์— ์˜ํ•˜๋ฉด ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž˜๋ชป๋œ ์˜์—ญ์˜ ์ถ”์ถœ ์—†์ด ๋‹ค๋ฅธ ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„๊ณผ ํ˜ˆ๊ด€์„ ๋ถ„ํ• ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ๊ตฌ์กฐ๋Š” ์‚ฌ๋žŒ์ด ๋””์ž์ธํ•œ ํ•™์Šต ๊ณผ์ •์ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ๊ฒฝ๊ณ„์„  ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ CNN์„ ์‚ฌ์šฉํ•œ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ๋‚ดํฌํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์€ ์ด์ฐจ์› ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํš๋“๋œ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ํ†ตํ•ด ์–‡์€ ํ˜ˆ๊ด€๋“ค์ด ์„ฑ๊ณต์ ์œผ๋กœ ๋ถ„ํ• ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„์˜ ํ•ด๋ถ€ํ•™์  ๋ถ„์„๊ณผ ์ž๋™ํ™”๋œ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์ด๋‹ค.Accurate liver and its vessel segmentation on abdominal computed tomography (CT) images is one of the most important prerequisites for computer-aided diagnosis (CAD) systems such as volumetric measurement, treatment planning, and further augmented reality-based surgical guide. In recent years, the application of deep learning in the form of convolutional neural network (CNN) has improved the performance of medical image segmentation, but it is difficult to provide high generalization performance for the actual clinical practice. Furthermore, although the contour features are an important factor in the image segmentation problem, they are hard to be employed on CNN due to many unclear boundaries on the image. In case of a liver vessel segmentation, a deep learning approach is impractical because it is difficult to obtain training data from complex vessel images. Furthermore, thin vessels are hard to be identified in the original image due to weak intensity contrasts and noise. In this dissertation, a CNN with high generalization performance and a contour learning scheme is first proposed for liver segmentation. Secondly, a liver vessel segmentation algorithm is presented that accurately segments even thin vessels. To build a CNN with high generalization performance, the auto-context algorithm is employed. The auto-context algorithm goes through two pipelines: the first predicts the overall area of a liver and the second predicts the final liver using the first prediction as a prior. This process improves generalization performance because the network internally estimates shape-prior. In addition to the auto-context, a contour learning method is proposed that uses only sparse contours rather than the entire contour. Sparse contours are obtained and trained by using only the mispredicted part of the network's final prediction. Experimental studies show that the proposed network is superior in accuracy to other modern networks. Multiple N-fold tests are also performed to verify the generalization performance. An algorithm for accurate liver vessel segmentation is also proposed by introducing vessel candidate points. To obtain confident vessel candidates, the 3D image is first reduced to 2D through maximum intensity projection. Subsequently, vessel segmentation is performed from the 2D images and the segmented pixels are back-projected into the original 3D space. Finally, a new level set function is proposed that utilizes both the original image and vessel candidate points. The proposed algorithm can segment thin vessels with high accuracy by mainly using vessel candidate points. The reliability of the points can be higher through robust segmentation in the projected 2D images where complex structures are simplified and thin vessels are more visible. Experimental results show that the proposed algorithm is superior to other active contour models. The proposed algorithms present a new method of segmenting the liver and its vessels. The auto-context algorithm shows that a human-designed curriculum (i.e., shape-prior learning) can improve generalization performance. The proposed contour learning technique can increase the accuracy of a CNN for image segmentation by focusing on its failures, represented by sparse contours. The vessel segmentation shows that minor vessel branches can be successfully segmented through vessel candidate points obtained by reducing the image dimension. The algorithms presented in this dissertation can be employed for later analysis of liver anatomy that requires accurate segmentation techniques.Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Problem statement 3 1.3 Main contributions 6 1.4 Contents and organization 9 Chapter 2 Related Works 10 2.1 Overview 10 2.2 Convolutional neural networks 11 2.2.1 Architectures of convolutional neural networks 11 2.2.2 Convolutional neural networks in medical image segmentation 21 2.3 Liver and vessel segmentation 37 2.3.1 Classical methods for liver segmentation 37 2.3.2 Vascular image segmentation 40 2.3.3 Active contour models 46 2.3.4 Vessel topology-based active contour model 54 2.4 Motivation 60 Chapter 3 Liver Segmentation via Auto-Context Neural Network with Self-Supervised Contour Attention 62 3.1 Overview 62 3.2 Single-pass auto-context neural network 65 3.2.1 Skip-attention module 66 3.2.2 V-transition module 69 3.2.3 Liver-prior inference and auto-context 70 3.2.4 Understanding the network 74 3.3 Self-supervising contour attention 75 3.4 Learning the network 81 3.4.1 Overall loss function 81 3.4.2 Data augmentation 81 3.5 Experimental Results 83 3.5.1 Overview 83 3.5.2 Data configurations and target of comparison 84 3.5.3 Evaluation metric 85 3.5.4 Accuracy evaluation 87 3.5.5 Ablation study 93 3.5.6 Performance of generalization 110 3.5.7 Results from ground-truth variations 114 3.6 Discussion 116 Chapter 4 Liver Vessel Segmentation via Active Contour Model with Dense Vessel Candidates 119 4.1 Overview 119 4.2 Dense vessel candidates 124 4.2.1 Maximum intensity slab images 125 4.2.2 Segmentation of 2D vessel candidates and back-projection 130 4.3 Clustering of dense vessel candidates 135 4.3.1 Virtual gradient-assisted regional ACM 136 4.3.2 Localized regional ACM 142 4.4 Experimental results 145 4.4.1 Overview 145 4.4.2 Data configurations and environment 146 4.4.3 2D segmentation 146 4.4.4 ACM comparisons 149 4.4.5 Evaluation of bifurcation points 154 4.4.6 Computational performance 159 4.4.7 Ablation study 160 4.4.8 Parameter study 162 4.5 Application to portal vein analysis 164 4.6 Discussion 168 Chapter 5 Conclusion and Future Works 170 Bibliography 172 ์ดˆ๋ก 197Docto

    A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 118-135)Text in English; Abstract: Turkish and Englishxv, 145 leavesDeveloping a robust method for liver segmentation from magnetic resonance images is a challenging task due to similar intensity values between adjacent organs, geometrically complex liver structure and injection of contrast media, which causes all tissues to have different gray level values. Several artifacts of pulsation and motion, and partial volume effects also increase difficulties for automatic liver segmentation from magnetic resonance images. In this thesis, we present an overview about liver segmentation methods in magnetic resonance images and show comparative results of seven different liver segmentation approaches chosen from deterministic (K-means based), probabilistic (Gaussian model based), supervised neural network (multilayer perceptron based) and deformable model based (level set) segmentation methods. The results of qualitative and quantitative analysis using sensitivity, specificity and accuracy metrics show that the multilayer perceptron based approach and a level set based approach which uses a distance regularization term and signed pressure force function are reasonable methods for liver segmentation from spectral pre-saturation inversion recovery images. However, the multilayer perceptron based segmentation method requires a higher computational cost. The distance regularization term based automatic level set method is very sensitive to chosen variance of Gaussian function. Our proposed level set based method that uses a novel signed pressure force function, which can control the direction and velocity of the evolving active contour, is faster and solves several problems of other applied methods such as sensitivity to initial contour or variance parameter of the Gaussian kernel in edge stopping functions without using any regularization term
    • โ€ฆ
    corecore