679 research outputs found

    Color Image Segmentation Using Generalized Inverted Finite Mixture Models By Integrating Spatial Information

    Get PDF
    In computer vision, image segmentation plays foundational role. Innumerable techniques, such as active contour, graph-cut-based, model-based, machine learning, and clustering-based methods have been proposed for tackling the image segmentation problem. But, none of them is universally applicable. Thus, the hunt for optimized and robust models for image segmentation is still under-process and also an open question. The challenges faced in image segmentation are the integration of spatial information, finding the exact number of clusters (M), and to segment the image smoothly without any inaccuracy specially in the presence of noise, a complex background, low contrast and, inhomogeneous intensity. The use of finite mixture model (FMMs) for image segmentation is very popular approach in the field of computer vision. The application of image segmentation using FMM ranges from automatic number plate recognition, content-based image retrieval, texture recognition, facial recognition, satellite imagery etc. Image segmentation using FMM undergoes some problems. FMM-based image segmentation considers neither spatial correlation among the peer pixels nor the prior knowledge that the adjacent pixels are most likely belong to the same cluster. Also, color images are sensitive to illumination and noise. To overcome these limitations, we have used three different methods for integrating spatial information with FMM. First method uses the prior knowledge of M. In second method, we have used Markov Random Field (MRF). Lastly, in third, we have used weighted geometric and arithmetic mean template. We have implemented these methods with inverted Dirichlet mixture model (IDMM), generalized inverted Dirichlet mixture model (GIDMM) and inverted Beta Liouville mixture model (IBLMM). For experimentation, the Berkeley 500 (BSD500) and MIT's Computational Visual Cognition Laboratory (CVCL) datasets are employed. Furthermore, to compare the image segmentation results, the outputs of IDMM, GIDMM, and IBLMM are compared with each other, using segmentation performance evaluation metrics

    Fusion of Hidden Markov Random Field Models and Its Bayesian Estimation

    Full text link

    Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments

    Get PDF
    Optical microscopy provides rich spatio-temporal information characterizing in vivo molecular motion. However, effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study focuses on techniques for analyzing Single Particle Tracking (SPT) data experiencing abrupt state changes. We demonstrate the approach on GFP tagged chromatids experiencing metaphase in yeast cells and probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes are induced by factors such as microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, etc. Simulations are used to demonstrate the relevance of the approach in more general SPT data analyses. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and discuss limitations of the approach. In addition, we demonstrate new computational techniques for tuning hyperparameters and for checking the statistical consistency of model assumptions directly against individual experimental trajectories; the techniques circumvent the need for "ground-truth" and subjective information.Comment: 25 pages, 6 figures. Differs only typographically from PLoS One publication available freely as an open-access article at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.013763

    A Study on Variational Component Splitting approach for Mixture Models

    Get PDF
    Increase in use of mobile devices and the introduction of cloud-based services have resulted in the generation of enormous amount of data every day. This calls for the need to group these data appropriately into proper categories. Various clustering techniques have been introduced over the years to learn the patterns in data that might better facilitate the classification process. Finite mixture model is one of the crucial methods used for this task. The basic idea of mixture models is to fit the data at hand to an appropriate distribution. The design of mixture models hence involves finding the appropriate parameters of the distribution and estimating the number of clusters in the data. We use a variational component splitting framework to do this which could simultaneously learn the parameters of the model and estimate the number of components in the model. The variational algorithm helps to overcome the computational complexity of purely Bayesian approaches and the over fitting problems experienced with Maximum Likelihood approaches guaranteeing convergence. The choice of distribution remains the core concern of mixture models in recent research. The efficiency of Dirichlet family of distributions for this purpose has been proved in latest studies especially for non-Gaussian data. This led us to study the impact of variational component splitting approach on mixture models based on several distributions. Hence, our contribution is the application of variational component splitting approach to design finite mixture models based on inverted Dirichlet, generalized inverted Dirichlet and inverted Beta-Liouville distributions. In addition, we also incorporate a simultaneous feature selection approach for generalized inverted Dirichlet mixture model along with component splitting as another experimental contribution. We evaluate the performance of our models with various real-life applications such as object, scene, texture, speech and video categorization

    Finite Bivariate and Multivariate Beta Mixture Models Learning and Applications

    Get PDF
    Finite mixture models have been revealed to provide flexibility for data clustering. They have demonstrated high competence and potential to capture hidden structure in data. Modern technological progresses, growing volumes and varieties of generated data, revolutionized computers and other related factors are contributing to produce large scale data. This fact enhances the significance of finding reliable and adaptable models which can analyze bigger, more complex data to identify latent patterns, deliver faster and more accurate results and make decisions with minimal human interaction. Adopting the finest and most accurate distribution that appropriately represents the mixture components is critical. The most widely adopted generative model has been the Gaussian mixture. In numerous real-world applications, however, when the nature and structure of data are non-Gaussian, this modelling fails. One of the other crucial issues when using mixtures is determination of the model complexity or number of mixture components. Minimum message length (MML) is one of the main techniques in frequentist frameworks to tackle this challenging issue. In this work, we have designed and implemented a finite mixture model, using the bivariate and multivariate Beta distributions for cluster analysis and demonstrated its flexibility in describing the intrinsic characteristics of the observed data. In addition, we have applied our estimation and model selection algorithms to synthetic and real datasets. Most importantly, we considered interesting applications such as in image segmentation, software modules defect prediction, spam detection and occupancy estimation in smart buildings

    A Study on Online Variational learning : Medical Applications

    Get PDF
    Data mining is an extensive area of research which is applied in various critical domains. In clinical aspect, data mining has emerged to assist clinicians in early detection, diagnosis and prevention of diseases. On the other hand, advances in computational methods have led to the implementation of machine learning in multi-modal clinical image analysis such as in CT, X-ray, MRI, microscopy among others. A challenge to these applications is the high variability, inconsistent regions with missing edges, absence of texture contrast and high noise in the background of biomedical images. To overcome this limitation various segmentation approaches have been investigated to address these shortcomings and to transform medical images into meaningful information. It is of utmost importance to have the right match between the bio-medical data and the applied algorithm. During the past decade, ïŹnite mixture models have been revealed to be one of the most ïŹ‚exible and popular approaches in data clustering. Here, we propose a statistical framework for online variational learning of ïŹnite mixture models for clustering medical images. The online variational learning framework is used to estimate the parameters and the number of mixture components simultaneously in a uniïŹed framework, thus decreasing the computational complexity of the model and the over ïŹtting problems experienced with maximum likelihood approaches guaranteeing convergence. In online learning, the data becomes available in a sequential order, thus sequentially updating the best predictor for the future data at each step, as opposed to batch learning techniques which generate the best predictor by learning the entire data set at once. The choice of distributions remains the core concern of mixture models in recent research. The efïŹciency of Dirichlet family of distributions for this purpose has been proved in latest studies especially for non-Gaussian data. This led us to analyze online variational learning approach for ïŹnite mixture models based on different distributions. iii To this end, our contribution is the application of online variational learning approach to design ïŹnite mixture models based on inverted Dirichlet, generalized inverted Dirichlet with feature selection and inverted Beta-Liouville distributions in medical domain. We evaluated our proposed models on different biomedical image data sets. Furthermore, in each case we compared the proposed algorithm with other popular algorithms. The models detect the disease patterns with high conïŹdence. Computational and statistical approaches like the ones presented in our work hold a signiïŹcant impact on medical image analysis and interpretation in both clinical applications and scientiïŹc research. We believe that the proposed models have the capacity to address multi modal biomedical image data sets and can be further applied by researchers to analyse correct disease patterns

    spatial and temporal predictions for positive vectors

    Get PDF
    Predicting a given pixel from surrounding neighboring pixels is of great interest for several image processing tasks. To model images, many researchers use Gaussian distributions. However, some data are obviously non-Gaussian, such as the image clutter and texture. In such cases, predictors are hard to derive and to obtain. In this thesis, we analytically derive a new non-linear predictor based on an inverted Dirichlet mixture. The non-linear combination of the neighbouring pixels and the combination of the mixture parameters demonstrate a good efficiency in predicting pixels. In order to prove the efficacy of our predictor, we use two challenging tasks, which are; object detection and image restoration. We also develop a pixel prediction framework based on a finite generalized inverted Dirichlet (GID) mixture model that has proven its efficiency in several machine learning applications. We propose a GID optimal predictor, and we learn its parameters using a likelihood-based approach combined with the Newton-Raphson method. We demonstrate the efficiency of our proposed approach through a challenging application, namely image inpainting, and we compare the experimental results with related-work methods. Finally, we build a new time series state space model based on inverted Dirichlet distribution. We use the power steady modeling approach and we derive an analytical expression of the model latent variable using the maximum a posteriori technique. We also approximate the predictive density using local variational inference, and we validate our model on the electricity consumption time series dataset of Germany. A comparison with the Generalized Dirichlet state space model is conducted, and the results demonstrate the merits of our approach in modeling continuous positive vectors

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    Variational Learning for Finite Inverted Dirichlet Mixture Models and Its Applications

    Get PDF
    Clustering is an important step in data mining, machine learning, computer vision and image processing. It is the process of assigning similar objects to the same subset. Among available clustering techniques, finite mixture models have been remarkably used, since they have the ability to consider prior knowledge about the data. Employing mixture models requires, choosing a standard distribution, determining the number of mixture components and estimating the model parameters. Currently, the combination of Gaussian distribution, as the standard distribution, and Expectation Maximization (EM), as the parameter estimator, has been widely used with mixture models. However, each of these choices has its own limitations. In this thesis, these limitations are discussed and addressed via defining a variational inference framework for finite inverted Dirichlet mixture model, which is able to provide a better capability in modeling multivariate positive data, that appear frequently in many real world applications. Finite inverted Dirichlet mixtures enable us to model high-dimensional, both symmetric and asymmetric data. Compared to the conventional expectation maximization (EM) algorithm, the variational approach has the following advantages: it is computationally more efficient, it converges fast, and is able to estimate the parameters and the number of the mixture model components, automatically and simultaneously. The experimental results validate the presented approach on different synthetic datasets and shows its performance for two interesting and challenging real world applications, namely natural scene categorization and human activity classification
    • 

    corecore