762 research outputs found

    Informative sample generation using class aware generative adversarial networks for classification of chest Xrays

    Full text link
    Training robust deep learning (DL) systems for disease detection from medical images is challenging due to limited images covering different disease types and severity. The problem is especially acute, where there is a severe class imbalance. We propose an active learning (AL) framework to select most informative samples for training our model using a Bayesian neural network. Informative samples are then used within a novel class aware generative adversarial network (CAGAN) to generate realistic chest xray images for data augmentation by transferring characteristics from one class label to another. Experiments show our proposed AL framework is able to achieve state-of-the-art performance by using about 35%35\% of the full dataset, thus saving significant time and effort over conventional methods

    Monocular Object Instance Segmentation and Depth Ordering with CNNs

    Full text link
    In this paper we tackle the problem of instance-level segmentation and depth ordering from a single monocular image. Towards this goal, we take advantage of convolutional neural nets and train them to directly predict instance-level segmentations where the instance ID encodes the depth ordering within image patches. To provide a coherent single explanation of an image we develop a Markov random field which takes as input the predictions of convolutional neural nets applied at overlapping patches of different resolutions, as well as the output of a connected component algorithm. It aims to predict accurate instance-level segmentation and depth ordering. We demonstrate the effectiveness of our approach on the challenging KITTI benchmark and show good performance on both tasks.Comment: International Conference on Computer Vision (ICCV), 201

    Multiscale Fields of Patterns

    Full text link
    We describe a framework for defining high-order image models that can be used in a variety of applications. The approach involves modeling local patterns in a multiscale representation of an image. Local properties of a coarsened image reflect non-local properties of the original image. In the case of binary images local properties are defined by the binary patterns observed over small neighborhoods around each pixel. With the multiscale representation we capture the frequency of patterns observed at different scales of resolution. This framework leads to expressive priors that depend on a relatively small number of parameters. For inference and learning we use an MCMC method for block sampling with very large blocks. We evaluate the approach with two example applications. One involves contour detection. The other involves binary segmentation.Comment: In NIPS 201
    corecore