19,670 research outputs found

    Image segmentation using fuzzy clustering incorporating spatial information

    Get PDF
    Effective image segmentation cannot be achieved for a fuzzy clustering algorithm based on using only pixel intensity, pixel locations or a combination of the two. Often if both pixel intensity and pixel location are combined, one feature tends to minimize the effect of other, thus degrading the resulting segmentation. This paper directly addresses this problem by introducing a new algorithm called image segmentation using fuzzy clustering incorporating spatial information (FCSI), which merges the segmented results independently generated by fuzzy clustering-based on pixel intensity and the location of pixels. Qualitative results show the superiority of the FCSI algorithm compared with the fuzzy c-means (FCM) algorithm for all three alternatives, clustering using only pixel intensity, pixel locations and a combination of the two

    Fuzzy image segmentation using location and intensity information

    Get PDF
    The segmentation results of any clustering algorithm are very sensitive to the features used in the similarity measure and the object types, which reduce the generalization capability of the algorithm. The previously developed algorithm called image segmentation using fuzzy clustering incorporating spatial information (FCSI) merged the independently segmented results generated by fuzzy clustering-based on pixel intensity and pixel location. The main disadvantages of this algorithm are that a perceptually selected threshold does not consider any semantic information and also produces unpredictable segmentation results for objects (regions) covering the entire image. This paper directly addresses these issues by introducing a new algorithm called fuzzy image segmentation using location and intensity (FSLI) by modifying the original FCSI algorithm. It considers the topological feature namely, connectivity and the similarity based on pixel intensity and surface variation. Qualitative and quantitative results confirm the considerable improvements achieved using the FSLI algorithm compared with FCSI and the fuzzy c-means (FCM) algorithm for all three alternatives, namely clustering using only pixel intensity, pixel location and a combination of the two, for a range of sample of images

    Automatic Feature Set Selection for Merging Image Segmentation Results Using Fuzzy Clustering

    Get PDF
    The image segmentation performance of clustering algorithms is highly dependent on the features used and the type of objects contained in the image, which limits the generalization ability of such algorithms. As a consequence, a fuzzy image segmentation using suppressed fuzzy c-means clustering (FSSC) algorithm was proposed that merged the initially segmented regions produced by a fuzzy clustering algorithm, using two different feature sets each comprising two features from pixel location, pixel intensity and a combination of both, which considered objects with similar surface variations (SSV), the arbitrariness of fuzzy c-means (FCM) algorithm using pixel location and the connectedness property of objects. The feature set selection for the initial segmentation in the merging technique was however, inaccurate because it did not consider all possible feature set combinations and also manually defined the threshold used to identify objects having SSV. To overcome these limitations, a new automatic feature set selection for merging image segmentation results using fuzzy clustering (AFMSF) algorithm is proposed, which considers the best feature set selection and also calculates the threshold based upon human visual perception. Both qualitative and quantitative analysis prove the superiority of AFMSF algorithm compared with other clustering techniques including FSSC, FCM, possibilistic c-means (PCM) and SFCM, for different image types

    Fuzzy Clustering Image Segmentation Based on Particle Swarm Optimization

    Get PDF
    Image segmentation refers to the technology to segment the image into different regions with different characteristics and to extract useful objectives, and it is a key step from image processing to image analysis. Based on the comprehensive study of image segmentation technology, this paper analyzes the advantages and disadvantages of the existing fuzzy clustering algorithms; integrates the particle swarm optimization (PSO) with the characteristics of global optimization and rapid convergence and fuzzy clustering (FC) algorithm with fuzzy clustering effects starting from the perspective of particle swarm and fuzzy membership restrictions and gets a PSO-FC image segmentation algorithm so as to effectively avoid being trapped into the local optimum and improve the stability and reliability of clustering algorithm. The experimental results show that this new PSO-FC algorithm has excellent image segmentation effects

    A Comparative Analysis of K-Means and Fuzzy C-Means Clustering Algorithms Based on CT Liver Image

    Get PDF
    Image processing techniques are broadly used in different areas of medical imaging to detect different types of abnormalities. The clustering algorithm is used in image processing for image segmentation. Image processing technique can help to detect the tumor and also it helps to identify the affected parts of the organs. This paper describes two clustering algorithm K-Means and Fuzzy C-Means clustering to compare their performance based on CT liver image. The segmentation result of K-Means is compared to the segmentation result of Fuzzy C-Means clustering. Experiments were conducted to evaluate their performance based on some criteria such as computational time, energy, homogeneity, PSNR etc

    Fuzzy Clustering for Image Segmentation Using Generic Shape Information

    Get PDF
    The performance of clustering algorithms for image segmentation are highly sensitive to the features used and types of objects in the image, which ultimately limits their generalization capability. This provides strong motivation to investigate integrating shape information into the clustering framework to improve the generality of these algorithms. Existing shape-based clustering techniques mainly focus on circular and elliptical clusters and so are unable to segment arbitrarily-shaped objects. To address this limitation, this paper presents a new shape-based algorithm called fuzzy clustering for image segmentation using generic shape information (FCGS), which exploits the B-spline representation of an object's shape in combination with the Gustafson-Kessel clustering algorithm. Qualitative and quantitative results for FCGS confirm its superior segmentation performance consistently compared to well-established shape-based clustering techniques, for a wide range of test images comprising various regular and arbitrary-shaped objects

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    Study and Development of Some Novel Image Segmentation Techniques

    Get PDF
    Some fuzzy technique based segmentation methods are studied and implemented and some fuzzy c means clustering based segmentation algorithms are developed in this thesis to suppress high and low uniform random noise. The reason for not developing fuzzy rule based segmentation method is that they are application dependent In many occasions, the images in real life are affected with noise. Fuzzy c means clustering based segmentation does not give good segmentation result under such condition. Various extension of the FCM method for segmentation are present in the literature. But most of them modify the objective function hence changing the basic FCM algorithm present in MATLAB toolboxes. Hence efforts have been made to develop FCM algorithm without modifying their objective function for better segmentation . The fuzzy technique based segmentation methods that are studied and developed are summarized here. (A) Fuzzy edge detection based segmentation: Two fuzzy edge detection methods are studied and implemented for segmentation: (i) FIS based edge detection and (ii) Fast multilevel fuzzy edge detector (FMFED). (i): The Fuzzy Inference system (FIS) based edge detector consists of some fuzzy inference rules which are defined in such a way that the FIS system output (“edges”) is high only for those pixels belonging to edges in the input image. A robustness to contrast and lightining variations were also taken into consideration while developing these rules.The output of the FIS based edge detector is then compared with the existing Sobel, LoG and Canny edge detector results. The algorithm is seen to be application dependent and time consuming. (ii) Fast Multilevel Fuzzy Edge Detector: To realise the fast and accurate detection of edges, the FMFED algorithm is proposed. It first enhances the image contrast by means of a fast multilevel fuzzy enhancement algorithm using simple transformation function based on two image thresholds. Second, the edges are extracted from the enhanced image by using a two stage edge detector operator that identifies the edge candidates based on local characteristics of the image and then determines the true edge pixels using edge detector operator based on extremum of the gradient values. Finally the segmentation of the edge image is done by morphological operator by edge linking. (B) FCM based segmentation: Two fuzzy clustering based segmentation methods are developed: (i) Modified Spatial Fuzzy c-Means (MSFCM) (ii) Neighbourhood Attraction Fuzzy c-Means (NAFCM). . (i) Contrast-Limited Adaptive Histogram Equalization Fuzzy c-Means (CLAHEFCM): This proposed algorithm presents a color segmentation process for low contrast images or unevenly illuminated images. The algorithm presented in this paper first enhances the contrast of the image by using contrast limited adaptive histogram equalization. After the enhancement of the image this method divides the color space into a given number of clusters, the number of cluster are fixed initially. The image is converted from RGB color space to LAB color space before the clustering process. Clustering is done here by using Fuzzy c means algorithm. The image is segmented based on color of a region, that is, areas having same color are grouped together. The image segmentation is done by taking into consideration, to which cluster a given pixel belongs the most. The method has been applied on a number of color test images and it is observed to give good segmentation results (ii) Modified Spatial Fuzzy c-means (MSFCM): The proposed algorithm divides the color space into a given number of clusters, the number of cluster are fixed initially. The image is converted from RGB color space to LAB color space before the clustering process. A robust segmentation technique based on extension to the traditional fuzzy c-means (FCM) clustering algorithm is proposed. The spatial information of each pixel in an image has been taken into consideration to get a noise free segmentation result. The image is segmented based on color of a region, that is, areas having same color are grouped together. The image segmentation is done by taking into consideration, to which cluster a given pixel belongs the most. The method has been applied to some color test images and its performance has been compared to FCM and FCM based methods to show its superiority over them. The proposed technique is observed to be an efficient and easy method for segmentation of noisy images. (iv) Neighbourhood Attraction Fuzzy c Means Algorithm: A new algorithm based on the IFCM neighbourhood attraction is used without changing the distance function of the FCM and hence avoiding an extra neural network optimization step for the adjusting parameters of the distance function, it is called Neighborhood Atrraction FCM (NAFCM). During clustering, each pixel attempts to attract its neighbouring pixels towards its own cluster. This neighbourhood attraction depends on two factors: the pixel intensities or feature attraction, and the spatial position of the neighbours or distance attraction, which also depends on neighbourhood structure. The NAFCM algorithm is tested on a synthetic image (chapter 6, figure 6.3-6.6) and a number of skin tumor images. It is observed to produce excellent clustering result under high noise condition when compared with the other FCM based clustering methods

    Fuzzy C-Means Clustering Based on Improved Marked Watershed Transformation

    Get PDF
    Currently, the fuzzy c-means algorithm plays a certain role in remote sensing image classification. However, it is easy to fall into local optimal solution, which leads to poor classification. In order to improve the accuracy of classification, this paper, based on the improved marked watershed segmentation, puts forward a fuzzy c-means clustering optimization algorithm. Because the watershed segmentation and fuzzy c-means clustering are sensitive to the noise of the image, this paper uses the adaptive median filtering algorithm to eliminate the noise information. During this process, the classification numbers and initial cluster centers of fuzzy c-means are determined by the result of the fuzzy similar relation clustering. Through a series of comparative simulation experiments, the results show that the method proposed in this paper is more accurate than the ISODATA method, and it is a feasible training method
    corecore