18,934 research outputs found

    Evolving Ensemble Models for Image Segmentation Using Enhanced Particle Swarm Optimization

    Get PDF
    In this paper, we propose particle swarm optimization (PSO)-enhanced ensemble deep neural networks and hybrid clustering models for skin lesion segmentation. A PSO variant is proposed, which embeds diverse search actions including simulated annealing, levy flight, helix behavior, modified PSO, and differential evolution operations with spiral search coefficients. These search actions work in a cascade manner to not only equip each individual with different search operations throughout the search process but also assign distinctive search actions to different particles simultaneously in every single iteration. The proposed PSO variant is used to optimize the learning hyper-parameters of convolutional neural networks (CNNs) and the cluster centroids of classical Fuzzy C-Means clustering respectively to overcome performance barriers. Ensemble deep networks and hybrid clustering models are subsequently constructed based on the optimized CNN and hybrid clustering segmenters for lesion segmentation. We evaluate the proposed ensemble models using three skin lesion databases, i.e., PH2, ISIC 2017, and Dermofit Image Library, and a blood cancer data set, i.e., ALL-IDB2. The empirical results indicate that our models outperform other hybrid ensemble clustering models combined with advanced PSO variants, as well as state-of-the-art deep networks in the literature for diverse challenging image segmentation tasks

    Combining Multiple Clusterings via Crowd Agreement Estimation and Multi-Granularity Link Analysis

    Full text link
    The clustering ensemble technique aims to combine multiple clusterings into a probably better and more robust clustering and has been receiving an increasing attention in recent years. There are mainly two aspects of limitations in the existing clustering ensemble approaches. Firstly, many approaches lack the ability to weight the base clusterings without access to the original data and can be affected significantly by the low-quality, or even ill clusterings. Secondly, they generally focus on the instance level or cluster level in the ensemble system and fail to integrate multi-granularity cues into a unified model. To address these two limitations, this paper proposes to solve the clustering ensemble problem via crowd agreement estimation and multi-granularity link analysis. We present the normalized crowd agreement index (NCAI) to evaluate the quality of base clusterings in an unsupervised manner and thus weight the base clusterings in accordance with their clustering validity. To explore the relationship between clusters, the source aware connected triple (SACT) similarity is introduced with regard to their common neighbors and the source reliability. Based on NCAI and multi-granularity information collected among base clusterings, clusters, and data instances, we further propose two novel consensus functions, termed weighted evidence accumulation clustering (WEAC) and graph partitioning with multi-granularity link analysis (GP-MGLA) respectively. The experiments are conducted on eight real-world datasets. The experimental results demonstrate the effectiveness and robustness of the proposed methods.Comment: The MATLAB source code of this work is available at: https://www.researchgate.net/publication/28197031

    Performance Enhancement of Hyperspectral Semantic Segmentation Leveraging Ensemble Networks

    Get PDF
    Hyperspectral image (HSI) semantic segmentation is a growing field within computer vision, machine learning, and forestry. Due to the separate nature of these communities, research applying deep learning techniques to ground-type semantic segmentation needs improvement, along with working to bring the research and expectations of these three communities together. Semantic segmentation consists of classifying individual pixels within the image based on the features present. Many issues need to be resolved in HSI semantic segmentation including data preprocessing, feature reduction, semantic segmentation techniques, and adversarial training. In this thesis, we tackle these challenges by employing ensemble methods for HSI semantic segmentation. Deep neural networks (DNNs) for classification tasks have been employed in HSI semantic segmentation with great success. The ensemble method in traditional classification is often used to increase performance, but research into applying it to semantic segmentation in HSIs is relatively new. Instead of using a single network approach to classification, the ensemble method employs multiple networks to improve performance. Research into ensemble methods in HSI has seen increased accuracy, but often has higher computational complexity and relies on expensive preprocessing techniques. To showcase the performance increase the ensemble method has on semantic segmentation, we propose the novel flagship model Clustering Ensemble U-Net (CEU-Net). In CEU-Net we (1) use a bagging ensemble technique to reduce the computational complexity, (2) utilize clustering on class labels as an intelligent method of delineating which data goes to each network, thereby making each sub-network an expert on a particular cluster, and (3) implement with or without patching for better data flexibility. It is shown that CEU-Net outperforms existing hyperspectral semantic segmentation methods, achieving better performance with and without patching compared to baseline models. Semantic segmentation models are vulnerable to adversarial attacks and need adversarial training to counteract them. Adversarial attacks are often intelligent attacks that use the knowledge of a trained classifier to create imperceptible perturbations to hurt classification accuracy. Traditional approaches to adversarial robustness focus on training or retraining a single network on attacked data, however, in the presence of multiple attacks these approaches decrease the performance compared to networks trained individually on each attack. To combat adversarial attacks in HSI semantic segmentation, we propose the Adversarial Discriminator Ensemble Network (ADE-Net) which focuses on attack type detection and adversarial robustness under a unified model to preserve per data-type weight optimally while making the overall network robust. In the proposed method, a discriminator network is used to separate data by attack type into their specific attack-expert ensemble sub-network. The ensemble and discriminator networks are trained together using a unified novel loss function to share information between each network. Our approach allows for the presence of multiple attacks mixed together while also labeling attack types during testing. In this thesis, we experimentally show that ADE-Net outperforms the baseline, which is a single network adversarially trained under a mix of multiple attacks, for popular HSI datasets

    Deep Learning versus Classical Regression for Brain Tumor Patient Survival Prediction

    Full text link
    Deep learning for regression tasks on medical imaging data has shown promising results. However, compared to other approaches, their power is strongly linked to the dataset size. In this study, we evaluate 3D-convolutional neural networks (CNNs) and classical regression methods with hand-crafted features for survival time regression of patients with high grade brain tumors. The tested CNNs for regression showed promising but unstable results. The best performing deep learning approach reached an accuracy of 51.5% on held-out samples of the training set. All tested deep learning experiments were outperformed by a Support Vector Classifier (SVC) using 30 radiomic features. The investigated features included intensity, shape, location and deep features. The submitted method to the BraTS 2018 survival prediction challenge is an ensemble of SVCs, which reached a cross-validated accuracy of 72.2% on the BraTS 2018 training set, 57.1% on the validation set, and 42.9% on the testing set. The results suggest that more training data is necessary for a stable performance of a CNN model for direct regression from magnetic resonance images, and that non-imaging clinical patient information is crucial along with imaging information.Comment: Contribution to The International Multimodal Brain Tumor Segmentation (BraTS) Challenge 2018, survival prediction tas
    corecore