64,142 research outputs found

    Fuzzy Clustering for Image Segmentation Using Generic Shape Information

    Get PDF
    The performance of clustering algorithms for image segmentation are highly sensitive to the features used and types of objects in the image, which ultimately limits their generalization capability. This provides strong motivation to investigate integrating shape information into the clustering framework to improve the generality of these algorithms. Existing shape-based clustering techniques mainly focus on circular and elliptical clusters and so are unable to segment arbitrarily-shaped objects. To address this limitation, this paper presents a new shape-based algorithm called fuzzy clustering for image segmentation using generic shape information (FCGS), which exploits the B-spline representation of an object's shape in combination with the Gustafson-Kessel clustering algorithm. Qualitative and quantitative results for FCGS confirm its superior segmentation performance consistently compared to well-established shape-based clustering techniques, for a wide range of test images comprising various regular and arbitrary-shaped objects

    Fuzzy Clustering Image Segmentation Based on Particle Swarm Optimization

    Get PDF
    Image segmentation refers to the technology to segment the image into different regions with different characteristics and to extract useful objectives, and it is a key step from image processing to image analysis. Based on the comprehensive study of image segmentation technology, this paper analyzes the advantages and disadvantages of the existing fuzzy clustering algorithms; integrates the particle swarm optimization (PSO) with the characteristics of global optimization and rapid convergence and fuzzy clustering (FC) algorithm with fuzzy clustering effects starting from the perspective of particle swarm and fuzzy membership restrictions and gets a PSO-FC image segmentation algorithm so as to effectively avoid being trapped into the local optimum and improve the stability and reliability of clustering algorithm. The experimental results show that this new PSO-FC algorithm has excellent image segmentation effects

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    A Comparative Analysis of K-Means and Fuzzy C-Means Clustering Algorithms Based on CT Liver Image

    Get PDF
    Image processing techniques are broadly used in different areas of medical imaging to detect different types of abnormalities. The clustering algorithm is used in image processing for image segmentation. Image processing technique can help to detect the tumor and also it helps to identify the affected parts of the organs. This paper describes two clustering algorithm K-Means and Fuzzy C-Means clustering to compare their performance based on CT liver image. The segmentation result of K-Means is compared to the segmentation result of Fuzzy C-Means clustering. Experiments were conducted to evaluate their performance based on some criteria such as computational time, energy, homogeneity, PSNR etc
    • …
    corecore