2,023 research outputs found

    Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

    Get PDF
    Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance

    Comparison of Balancing Techniques for Multimedia IR over Imbalanced Datasets

    Get PDF
    A promising method to improve the performance of information retrieval systems is to approach retrieval tasks as a supervised classification problem. Previous user interactions, e.g. gathered from a thorough log file analysis, can be used to train classifiers which aim to inference relevance of retrieved documents based on user interactions. A problem in this approach is, however, the large imbalance ratio between relevant and non-relevant documents in the collection. In standard test collection as used in academic evaluation frameworks such as TREC, non-relevant documents outnumber relevant documents by far. In this work, we address this imbalance problem in the multimedia domain. We focus on the logs of two multimedia user studies which are highly imbalanced. We compare a naiinodotve solution of randomly deleting documents belonging to the majority class with various balancing algorithms coming from different fields: data classification and text classification. Our experiments indicate that all algorithms improve the classification performance of just deleting at random from the dominant class

    Feature Learning from Spectrograms for Assessment of Personality Traits

    Full text link
    Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based on feature learning and spectrogram analysis is proposed to simplify the feature extraction process while maintaining a high level of accuracy. The proposed method learns a dictionary of discriminant features from patches extracted in the spectrogram representations of training speech segments. Each speech segment is then encoded using the dictionary, and the resulting feature set is used to perform classification of personality traits. Experiments indicate that the proposed method achieves state-of-the-art results with a significant reduction in complexity when compared to the most recent reference methods. The number of features, and difficulties linked to the feature extraction process are greatly reduced as only one type of descriptors is used, for which the 6 parameters can be tuned automatically. In contrast, the simplest reference method uses 4 types of descriptors to which 6 functionals are applied, resulting in over 20 parameters to be tuned.Comment: 12 pages, 3 figure

    Index ordering by query-independent measures

    Get PDF
    Conventional approaches to information retrieval search through all applicable entries in an inverted file for a particular collection in order to find those documents with the highest scores. For particularly large collections this may be extremely time consuming. A solution to this problem is to only search a limited amount of the collection at query-time, in order to speed up the retrieval process. In doing this we can also limit the loss in retrieval efficacy (in terms of accuracy of results). The way we achieve this is to firstly identify the most “important” documents within the collection, and sort documents within inverted file lists in order of this “importance”. In this way we limit the amount of information to be searched at query time by eliminating documents of lesser importance, which not only makes the search more efficient, but also limits loss in retrieval accuracy. Our experiments, carried out on the TREC Terabyte collection, report significant savings, in terms of number of postings examined, without significant loss of effectiveness when based on several measures of importance used in isolation, and in combination. Our results point to several ways in which the computation cost of searching large collections of documents can be significantly reduced

    A semi-supervised learning algorithm for relevance feedback and collaborative image retrieval

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The interaction of users with search services has been recognized as an important mechanism for expressing and handling user information needs. One traditional approach for supporting such interactive search relies on exploiting relevance feedbacks (RF) in the searching process. For large-scale multimedia collections, however, the user efforts required in RF search sessions is considerable. In this paper, we address this issue by proposing a novel semi-supervised approach for implementing RF-based search services. In our approach, supervised learning is performed taking advantage of relevance labels provided by users. Later, an unsupervised learning step is performed with the objective of extracting useful information from the intrinsic dataset structure. Furthermore, our hybrid learning approach considers feedbacks of different users, in collaborative image retrieval (CIR) scenarios. In these scenarios, the relationships among the feedbacks provided by different users are exploited, further reducing the collective efforts. Conducted experiments involving shape, color, and texture datasets demonstrate the effectiveness of the proposed approach. Similar results are also observed in experiments considering multimodal image retrieval tasks.The interaction of users with search services has been recognized as an important mechanism for expressing and handling user information needs. One traditional approach for supporting such interactive search relies on exploiting relevance feedbacks (RF) i2015FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2013/08645-0, 2013/50169-1]CNPq [306580/2012-8, 484254/2012-0]2013/08645-0; 2013/50169-1306580/2012-8;484254/2012-0SEM INFORMAÇÃ

    Blackthorn: Large-Scale Interactive Multimodal Learning

    Get PDF
    This paper presents Blackthorn, an efficient interactive multimodal learning approach facilitating analysis of multimedia collections of up to 100 million items on a single high-end workstation. Blackthorn features efficient data compression, feature selection, and optimizations to the interactive learning process. The Ratio-64 data representation introduced in this paper only costs tens of bytes per item yet preserves most of the visual and textual semantic information with good accuracy. The optimized interactive learning model scores the Ratio-64-compressed data directly, greatly reducing the computational requirements. The experiments compare Blackthorn with two baselines: Conventional relevance feedback, and relevance feedback using product quantization to compress the features. The results show that Blackthorn is up to 77.5× faster than the conventional relevance feedback alternative, while outperforming the baseline with respect to the relevance of results: It vastly outperforms the baseline on recall over time and reaches up to 108% of its precision. Compared to the product quantization variant, Blackthorn is just as fast, while producing more relevant results. On the full YFCC100M dataset, Blackthorn performs one complete interaction round in roughly 1 s while maintaining adequate relevance of results, thus opening multimedia collections comprising up to 100 million items to fully interactive learning-based analysis
    corecore