70 research outputs found

    Techniques for enhancing digital images

    Get PDF
    The images obtain from either research studies or optical instruments are often corrupted with noise. Image denoising involves the manipulation of image data to produce a visually high quality image. This thesis reviews the existing denoising algorithms and the filtering approaches available for enhancing images and/or data transmission. Spatial-domain and Transform-domain digital image filtering algorithms have been used in the past to suppress different noise models. The different noise models can be either additive or multiplicative. Selection of the denoising algorithm is application dependent. It is necessary to have knowledge about the noise present in the image so as to select the appropriated denoising algorithm. Noise models may include Gaussian noise, Salt and Pepper noise, Speckle noise and Brownian noise. The Wavelet Transform is similar to the Fourier transform with a completely different merit function. The main difference between Wavelet transform and Fourier transform is that, in the Wavelet Transform, Wavelets are localized in both time and frequency. In the standard Fourier Transform, Wavelets are only localized in frequency. Wavelet analysis consists of breaking up the signal into shifted and scales versions of the original (or mother) Wavelet. The Wiener Filter (mean squared estimation error) finds implementations as a LMS filter (least mean squares), RLS filter (recursive least squares), or Kalman filter. Quantitative measure (metrics) of the comparison of the denoising algorithms is provided by calculating the Peak Signal to Noise Ratio (PSNR), the Mean Square Error (MSE) value and the Mean Absolute Error (MAE) evaluation factors. A combination of metrics including the PSNR, MSE, and MAE are often required to clearly assess the model performance

    Denoising techniques - a comparison

    Get PDF
    Visual information transmitted in the form of digital images is becoming a major method of communication in the modern age, but the image obtained after transmission is often corrupted with noise. The received image needs processing before it can be used in applications. Image denoising involves the manipulation of the image data to produce a visually high quality image. This thesis reviews the existing denoising algorithms, such as filtering approach, wavelet based approach, and multifractal approach, and performs their comparative study. Different noise models including additive and multiplicative types are used. They include Gaussian noise, salt and pepper noise, speckle noise and Brownian noise. Selection of the denoising algorithm is application dependent. Hence, it is necessary to have knowledge about the noise present in the image so as to select the appropriate denoising algorithm. The filtering approach has been proved to be the best when the image is corrupted with salt and pepper noise. The wavelet based approach finds applications in denoising images corrupted with Gaussian noise. In the case where the noise characteristics are complex, the multifractal approach can be used. A quantitative measure of comparison is provided by the signal to noise ratio of the image

    Polynomial fitting and total variation based techniques on 1-D and 2-D signal denoising

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Master's) -- Bilkent University, 2010.Includes bibliographical references leaves 167-176.New techniques are developed for signal denoising and texture recovery. Geometrical theory of total variation (TV) is explored, and an algorithm that uses quadratic programming is introduced for total variation reduction. To minimize the staircase effect associated with commonly used total variation based techniques, robust algorithms are proposed for accurate localization of transition boundaries. For this boundary detection problem, three techniques are proposed. In the first method, the 1−D total variation is applied in first derivative domain. This technique is based on the fact that total variation forms piecewise constant parts and the constant parts in the derivative domain corresponds to lines in time domain. The boundaries of these constant parts are used as the transition boundaries for the line fitting. In the second technique proposed for boundary detection, a wavelet based technique is proposed. Since the mother wavelet can be used to detect local abrupt changes, the Haar wavelet function is used for the purpose of boundary detection. Convolution of a signal or its derivative family with this Haar mother wavelet gives responses at the edge locations, attaining local maxima. A basic local maximization technique is used to find the boundary locations. The last technique proposed for boundary detection is the well known Particle Swarm Optimization (PSO). The locations of the boundaries are randomly perturbed yielding an error for each set of boundaries. Pursuing the personal and global best positions, the boundary locations converge to a set of boundaries. In all of the techniques, polynomial fitting is applied to the part of the signal between the edges. A more complicated scenario for 1−D signal denoising is texture recovery. In the technique proposed in this thesis, the periodicity of the texture is exploited. Periodic and non-periodic parts are distinguished by examining total variation of the autocorrelation of the signal. In the periodic parts, the period size was found by PSO evolution. All the periods were averaged to remove the noise, and the final signal was synthesized. For the purpose of image denoising, optimum one dimensional total variation minimization is carried to two dimensions by Radon transform and slicing method. In the proposed techniques, the stopping criterion for the procedures is chosen as the error norm. The processes are stopped when the residual norm is comparable to noise standard deviation. 1−D and 2−D noise statistics estimation methods based on Maximum Likelihood Estimation (MLE) are presented. The proposed denoising techniques are compared with principal curve projection technique, total variation by Rudin et al, total variation by Willsky et al, and curvelets. The simulations show that our techniques outperform these widely used techniques in the literature.Yıldız, AykutM.S

    Attention-based Neural Cellular Automata

    Full text link
    Recent extensions of Cellular Automata (CA) have incorporated key ideas from modern deep learning, dramatically extending their capabilities and catalyzing a new family of Neural Cellular Automata (NCA) techniques. Inspired by Transformer-based architectures, our work presents a new class of attention-based\textit{attention-based} NCAs formed using a spatially localized\unicode{x2014}yet globally organized\unicode{x2014}self-attention scheme. We introduce an instance of this class named Vision Transformer Cellular Automata\textit{Vision Transformer Cellular Automata} (ViTCA). We present quantitative and qualitative results on denoising autoencoding across six benchmark datasets, comparing ViTCA to a U-Net, a U-Net-based CA baseline (UNetCA), and a Vision Transformer (ViT). When comparing across architectures configured to similar parameter complexity, ViTCA architectures yield superior performance across all benchmarks and for nearly every evaluation metric. We present an ablation study on various architectural configurations of ViTCA, an analysis of its effect on cell states, and an investigation on its inductive biases. Finally, we examine its learned representations via linear probes on its converged cell state hidden representations, yielding, on average, superior results when compared to our U-Net, ViT, and UNetCA baselines.Comment: NeurIPS 202

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Adaptive Representations for Image Restoration

    Get PDF
    In the �eld of image processing, building good representation models for natural images is crucial for various applications, such as image restora- tion, sampling, segmentation, etc. Adaptive image representation models are designed for describing the intrinsic structures of natural images. In the classical Bayesian inference, this representation is often known as the prior of the intensity distribution of the input image. Early image priors have forms such as total variation norm, Markov Random Fields (MRF), and wavelets. Recently, image priors obtained from machine learning tech- niques tend to be more adaptive, which aims at capturing the natural image models via learning from larger databases. In this thesis, we study adaptive representations of natural images for image restoration. The purpose of image restoration is to remove the artifacts which degrade an image. The degradation comes in many forms such as image blurs, noises, and artifacts from the codec. Take image denoising for an example. There are several classic representation methods which can generate state- of-the-art results. The �rst one is the assumption of image self-similarity. However, this representation has the issue that sometimes the self-similarity assumption would fail because of high noise levels or unique image contents. The second one is the wavelet based nonlocal representation, which also has a problem in that the �xed basis function is not adaptive enough for any arbitrary type of input images. The third is the sparse coding using over- complete dictionaries, which does not have the hierarchical structure that is similar to the one in human visual system and is therefore prone to denoising artifacts. My research started from image denoising. Through the thorough review and evaluation of state-of-the-art denoising methods, it was found that the representation of images is substantially important for the denoising tech- nique. At the same time, an improvement on one of the nonlocal denoising method was proposed, which improves the representation of images by the integration of Gaussian blur, clustering and Rotationally Invariant Block Matching. Enlightened by the successful application of sparse coding in compressive sensing, we exploited the image self-similarity by using a sparse representation based on wavelet coe�cients in a nonlocal and hierarchical way, which generates competitive results compared to the state-of-the-art denoising algorithms. Meanwhile, another adaptive local �lter learned by Genetic Programming (GP) was proposed for e�cient image denoising. In this work, we employed GP to �nd the optimal representations for local im- age patches through training on massive datasets, which yields competitive results compared to state-of-the-art local denoising �lters. After success- fully dealt with the denoising part, we moved to the parameter estimation for image degradation models. For instance, image blur identi�cation uses deep learning, which has recently been proposed as a popular image repre- sentation approach. This work has also been extended to blur estimation based on the fact that the second step of the framework has been replaced with general regression neural network. In a word, in this thesis, spatial cor- relations, sparse coding, genetic programming, deep learning are explored as adaptive image representation models for both image restoration and parameter estimation. We conclude this thesis by considering methods based on machine learning to be the best adaptive representations for natural images. We have shown that they can generate better results than conventional representation mod- els for the tasks of image denoising and deblurring

    BEMDEC: An Adaptive and Robust Methodology for Digital Image Feature Extraction

    Get PDF
    The intriguing study of feature extraction, and edge detection in particular, has, as a result of the increased use of imagery, drawn even more attention not just from the field of computer science but also from a variety of scientific fields. However, various challenges surrounding the formulation of feature extraction operator, particularly of edges, which is capable of satisfying the necessary properties of low probability of error (i.e., failure of marking true edges), accuracy, and consistent response to a single edge, continue to persist. Moreover, it should be pointed out that most of the work in the area of feature extraction has been focused on improving many of the existing approaches rather than devising or adopting new ones. In the image processing subfield, where the needs constantly change, we must equally change the way we think. In this digital world where the use of images, for variety of purposes, continues to increase, researchers, if they are serious about addressing the aforementioned limitations, must be able to think outside the box and step away from the usual in order to overcome these challenges. In this dissertation, we propose an adaptive and robust, yet simple, digital image features detection methodology using bidimensional empirical mode decomposition (BEMD), a sifting process that decomposes a signal into its two-dimensional (2D) bidimensional intrinsic mode functions (BIMFs). The method is further extended to detect corners and curves, and as such, dubbed as BEMDEC, indicating its ability to detect edges, corners and curves. In addition to the application of BEMD, a unique combination of a flexible envelope estimation algorithm, stopping criteria and boundary adjustment made the realization of this multi-feature detector possible. Further application of two morphological operators of binarization and thinning adds to the quality of the operator

    AUTOMATED ESTIMATION, REDUCTION, AND QUALITY ASSESSMENT OF VIDEO NOISE FROM DIFFERENT SOURCES

    Get PDF
    Estimating and removing noise from video signals is important to increase either the visual quality of video signals or the performance of video processing algorithms such as compression or segmentation where noise estimation or reduction is a pre-processing step. To estimate and remove noise, effective methods use both spatial and temporal information to increase the reliability of signal extraction from noise. The objective of this thesis is to introduce a video system having three novel techniques to estimate and reduce video noise from different sources, both effectively and efficiently and assess video quality without considering a reference non-noisy video. The first (intensity-variances based homogeneity classification) technique estimates visual noise of different types in images and video signals. The noise can be white Gaussian noise, mixed Poissonian- Gaussian (signal-dependent white) noise, or processed (frequency-dependent) noise. The method is based on the classification of intensity-variances of signal patches in order to find homogeneous regions that best represent the noise signal in the input signal. The method assumes that noise is signal-independent in each intensity class. To find homogeneous regions, the method works on the downsampled input image and divides it into patches. Each patch is assigned to an intensity class, whereas outlier patches are rejected. Then the most homogeneous cluster is selected and its noise variance is considered as the peak of noise variance. To account for processed noise, we estimate the degree of spatial correlation. To account for temporal noise variations a stabilization process is proposed. We show that the proposed method competes related state-of-the-art in noise estimation. The second technique provides solutions to remove real-world camera noise such as signal-independent, signal-dependent noise, and frequency-dependent noise. Firstly, we propose a noise equalization method in intensity and frequency domain which enables a white Gaussian noise filter to handle real noise. Our experiments confirm the quality improvement under real noise while white Gaussian noise filter is used with our equalization method. Secondly, we propose a band-limited time-space video denoiser which reduces video noise of different types. This denoiser consists of: 1) intensity-domain noise equalization to account for signal dependency, 2) band-limited anti-blocking time-domain filtering of current frame using motion-compensated previous and subsequent frames, 3) spatial filtering combined with noise frequency equalizer to remove residual noise left from temporal filtering, and 4) intensity de-equalization to invert the first step. To decrease the chance of motion blur, temporal weights are calculated using two levels of error estimation; coarse (blocklevel) and fine (pixel-level). We correct the erroneous motion vectors by creating a homography from reliable motion vectors. To eliminate blockiness in block-based temporal filter, we propose three ideas: interpolation of block-level error, a band-limited filtering by subtracting the back-signal beforehand, and two-band motion compensation. The proposed time-space filter is parallelizable to be significantly accelerated by GPU. We show that the proposed method competes related state-ofthe- art in video denoising. The third (sparsity and dominant orientation quality index) technique is a new method to assess the quality of the denoised video frames without a reference (clean frames). In many image and video applications, a quantitative measure of image content, noise, and blur is required to facilitate quality assessment, when the ground-truth is not available. We propose a fast method to find the dominant orientation of image patches, which is used to decompose them into singular values. Combining singular values with the sparsity of the patch in the transform domain, we measure the possible image content and noise of the patches and of the whole image. To measure the effect of noise accurately, our method takes both low and high textured patches into account. Before analyzing the patches, we apply a shrinkage in the transform domain to increase the contrast of genuine image structure. We show that the proposed method is useful to select parameters of denoising algorithms automatically in different noise scenarios such as white Gaussian and real noise. Our objective and subjective results confirm the correspondence between the measured quality and the ground-truth and proposed method rivals related state-of-the-art approaches

    Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise

    Get PDF
    Impulse noise is a most common noise which affects the image quality during acquisition or transmission, reception or storage and retrieval process. Impulse noise comes under two categories: (1) fixed-valued impulse noise, also known as salt-and-pepper noise (SPN) due to its appearance, where the noise value may be either the minimum or maximum value of the dynamic gray-scale range of image and (2) random-valued impulse noise (RVIN), where the noisy pixel value is bounded by the range of the dynamic gray-scale of the image. In literature, many efficient filters are proposed to suppress the impulse noise. But their performance is not good under moderate and high noise conditions. Hence, there is sufficient scope to explore and develop efficient filters for suppressing the impulse noise at high noise densities. In the present research work, efforts are made to propose efficient filters that suppress the impulse noise and preserve the edges and fine details of an image in wide range of noise densities. It is clear from the literature that detection followed by filtering achieves better performance than filtering without detection. Hence, the proposed filters in this thesis are based on detection followed by filtering techniques. The filters which are proposed to suppress the SPN in this thesis are: Adaptive Noise Detection and Suppression (ANDS) Filter Robust Estimator based Impulse-Noise Reduction (REIR) Algorithm Impulse Denoising Using Improved Progressive Switching Median Filter (IDPSM) Impulse-Noise Removal by Impulse Classification (IRIC) A Novel Adaptive Switching Filter-I (ASF-I) for Suppression of High Density SPN A Novel Adaptive Switching Filter-II (ASF-II) for Suppression of High Density SPN Impulse Denoising Using Iterative Adaptive Switching Filter (IASF) In the first method, ANDS, neighborhood difference is employed for pixel classification. Controlled by binary image, the noise is filtered by estimating the value of a pixel with an adaptive switching based median filter applied exclusively to neighborhood pixels that are labeled noise-free. The proposed filter performs better in retaining edges and fine details of an image at low-to-medium densities of fixed-valued impulse noise.The REIR method is based on robust statistic technique, where adaptive window is used for pixel classification. The noisy pixel is replaced with Lorentzian estimator or average of the previously processed pixels. Because of adaptive windowing technique, the filter is able to suppress the noise at a density as high as 90%. In the proposed method, IDPSM, the noisy pixel is replaced with median of uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter makes it more efficient in noise detection and adaptive filtering window technique makes it robust enough to preserve edges and fine details of an image in wide range of noise densities. The forth proposed method is IRIC. The noisy pixel is replaced with median of processed pixels in the filtering window. At high noise densities, the median filtering may not be able to reject outliers always. Under such circumstances, the processed left neighboring pixel is considered as the estimated output. The computational complexity of this method is equivalent to that of a median filter having a 3×3 window. The proposed algorithm requires simple physical realization structures. Therefore, this algorithm may be quite useful for online and real-time applications. Two different adaptive switching filters: ASF-I and ASF-II are developed for suppressing SPN at high noise density. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Depending on noise estimation, a small filtering window size is initially selected and then the scheme adaptively changes the window size based on the number of noise-free pixels. Therefore, the proposed method removes the noise much more effectively even at noise density as high as 90% and yields high image quality. In the proposed method IASF, noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative structure, the performance of this filter is better than existing order-statistic filters. Further, the adaptive filtering window makes it robust enough to preserve the edges and fine details of an image. Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise x The filters which are proposed for suppressing random-valued impulse noise (RVIN) are: Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm The proposed method, Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from the median) scheme alongwith a threshold employed for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering window. Another proposed method for denoising the random-valued and fixed-valued impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in the filtering window of adaptively varied size. Three threshold functions are suggested and employed in this algorithm. Thus, three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are developed. They are observed to be quite efficient in noise detection and filtering. In the last part of the thesis, some efforts are made to develop filters for color image denoising. The filters which perform better in denoising gray-scale images are developed for suppression of impulsive noise from color images. Since the performance of denoising filters degrades in other color spaces, efforts are made to develop color image denoising filters in RGB color space only in this research work. The developed filters are: Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm It is observed from the simulation results that the proposed filters perform better than the existing methods. The proposed methods: ASF-1 and IASF exhibit quite superior performance in suppressing SPN in high noise densities compared to other methods. Similarly ALT-MAD-3 exhibits much better performance in suppressing RVIN of low to medium noise densities.The REIR method is based on robust statistic technique, where adaptive window is used for pixel classification. The noisy pixel is replaced with Lorentzian estimator or average of the previously processed pixels. Because of adaptive windowing technique, the filter is able to suppress the noise at a density as high as 90%. In the proposed method, IDPSM, the noisy pixel is replaced with median of uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter makes it more efficient in noise detection and adaptive filtering window technique makes it robust enough to preserve edges and fine details of an image in wide range of noise densities. The forth proposed method is IRIC. The noisy pixel is replaced with median of processed pixels in the filtering window. At high noise densities, the median filtering may not be able to reject outliers always. Under such circumstances, the processed left neighboring pixel is considered as the estimated output. The computational complexity of this method is equivalent to that of a median filter having a 3×3 window. The proposed algorithm requires simple physical realization structures. Therefore, this algorithm may be quite useful for online and real-time applications. Two different adaptive switching filters: ASF-I and ASF-II are developed for suppressing SPN at high noise density. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Depending on noise estimation, a small filtering window size is initially selected and then the scheme adaptively changes the window size based on the number of noise-free pixels. Therefore, the proposed method removes the noise much more effectively even at noise density as high as 90% and yields high image quality. In the proposed method IASF, noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative structure, the performance of this filter is better than existing order-statistic filters. Further, the adaptive filtering window makes it robust enough to preserve the edges and fine details of an image. Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise x The filters which are proposed for suppressing random-valued impulse noise (RVIN) are: Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm The proposed method, Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from the median) scheme alongwith a threshold employed for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering window. Another proposed method for denoising the random-valued and fixed-valued impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in the filtering window of adaptively varied size. Three threshold functions are suggested and employed in this algorithm. Thus, three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are developed. They are observed to be quite efficient in noise detection and filtering. In the last part of the thesis, some efforts are made to develop filters for color image denoising. The filters which perform better in denoising gray-scale images are developed for suppression of impulsive noise from color images. Since the performance of denoising filters degrades in other color spaces, efforts are made to develop color image denoising filters in RGB color space only in this research work. The developed filters are: Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm It is observed from the simulation results that the proposed filters perform better than the existing methods. The proposed methods: ASF-1 and IASF exhibit quite superior performance in suppressing SPN in high noise densities compared to other methods. Similarly ALT-MAD-3 exhibits much better performance in suppressing RVIN of low to medium noise densities.The REIR method is based on robust statistic technique, where adaptive window is used for pixel classification. The noisy pixel is replaced with Lorentzian estimator or average of the previously processed pixels. Because of adaptive windowing technique, the filter is able to suppress the noise at a density as high as 90%. In the proposed method, IDPSM, the noisy pixel is replaced with median of uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter makes it more efficient in noise detection and adaptive filtering window technique makes it robust enough to preserve edges and fine details of an image in wide range of noise densities. The forth proposed method is IRIC. The noisy pixel is replaced with median of processed pixels in the filtering window. At high noise densities, the median filtering may not be able to reject outliers always. Under such circumstances, the processed left neighboring pixel is considered as the estimated output. The computational complexity of this method is equivalent to that of a median filter having a 3×3 window. The proposed algorithm requires simple physical realization structures. Therefore, this algorithm may be quite useful for online and real-time applications. Two different adaptive switching filters: ASF-I and ASF-II are developed for suppressing SPN at high noise density. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Depending on noise estimation, a small filtering window size is initially selected and then the scheme adaptively changes the window size based on the number of noise-free pixels. Therefore, the proposed method removes the noise much more effectively even at noise density as high as 90% and yields high image quality. In the proposed method IASF, noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative structure, the performance of this filter is better than existing order-statistic filters. Further, the adaptive filtering window makes it robust enough to preserve the edges and fine details of an image. Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise x The filters which are proposed for suppressing random-valued impulse noise (RVIN) are: Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm The proposed method, Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from the median) scheme alongwith a threshold employed for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering window. Another proposed method for denoising the random-valued and fixed-valued impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in the filtering window of adaptively varied size. Three threshold functions are suggested and employed in this algorithm. Thus, three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are developed. They are observed to be quite efficient in noise detection and filtering. In the last part of the thesis, some efforts are made to develop filters for color image denoising. The filters which perform better in denoising gray-scale images are developed for suppression of impulsive noise from color images. Since the performance of denoising filters degrades in other color spaces, efforts are made to develop color image denoising filters in RGB color space only in this research work. The developed filters are: Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm It is observed from the simulation results that the proposed filters perform better than the existing methods. The proposed methods: ASF-1 and IASF exhibit quite superior performance in suppressing SPN in high noise densities compared to other methods. Similarly ALT-MAD-3 exhibits much better performance in suppressing RVIN of low to medium noise densities
    corecore