565 research outputs found

    Hidden Markov models for wavelet-based blind source separation

    Full text link

    Multiresolution image models and estimation techniques

    Get PDF

    Optimisation for image processing

    Get PDF
    The main purpose of optimisation in image processing is to compensate for missing, corrupted image data, or to find good correspondences between input images. We note that image data essentially has infinite dimensionality that needs to be discretised at certain levels of resolution. Most image processing methods find a suboptimal solution, given the characteristics of the problem. While the general optimisation literature is vast, there does not seem to be an accepted universal method for all image problems. In this thesis, we consider three interrelated optimisation approaches to exploit problem structures of various relaxations to three common image processing problems: 1. The first approach to the image registration problem is based on the nonlinear programming model. Image registration is an ill-posed problem and suffers from many undesired local optima. In order to remove these unwanted solutions, certain regularisers or constraints are needed. In this thesis, prior knowledge of rigid structures of the images is included in the problem using linear and bilinear constraints. The aim is to match two images while maintaining the rigid structure of certain parts of the images. A sequential quadratic programming algorithm is used, employing dimensional reduction, to solve the resulting discretised constrained optimisation problem. We show that pre-processing of the constraints can reduce problem dimensionality. Experimental results demonstrate better performance of our proposed algorithm compare to the current methods. 2. The second approach is based on discrete Markov Random Fields (MRF). MRF has been successfully used in machine learning, artificial intelligence, image processing, including the image registration problem. In the discrete MRF model, the domain of the image problem is fixed (relaxed) to a certain range. Therefore, the optimal solution to the relaxed problem could be found in the predefined domain. The original discrete MRF is NP hard and relaxations are needed to obtain a suboptimal solution in polynomial time. One popular approach is the linear programming (LP) relaxation. However, the LP relaxation of MRF (LP-MRF) is excessively high dimensional and contains sophisticated constraints. Therefore, even one iteration of a standard LP solver (e.g. interior-point algorithm), may take too long to terminate. Dual decomposition technique has been used to formulate a convex-nondifferentiable dual LP-MRF that has geometrical advantages. This has led to the development of first order methods that take into account the MRF structure. The methods considered in this thesis for solving the dual LP-MRF are the projected subgradient and mirror descent using nonlinear weighted distance functions. An analysis of the convergence properties of the method is provided, along with improved convergence rate estimates. The experiments on synthetic data and an image segmentation problem show promising results. 3. The third approach employs a hierarchy of problem's models for computing the search directions. The first two approaches are specialised methods for image problems at a certain level of discretisation. As input images are infinite-dimensional, all computational methods require their discretisation at some levels. Clearly, high resolution images carry more information but they lead to very large scale and ill-posed optimisation problems. By contrast, although low level discretisation suffers from the loss of information, it benefits from low computational cost. In addition, a coarser representation of a fine image problem could be treated as a relaxation to the problem, i.e. the coarse problem is less ill-conditioned. Therefore, propagating a solution of a good coarse approximation to the fine problem could potentially improve the fine level. With the aim of utilising low level information within the high level process, we propose a multilevel optimisation method to solve the convex composite optimisation problem. This problem consists of the minimisation of the sum of a smooth convex function and a simple non-smooth convex function. The method iterates between fine and coarse levels of discretisation in the sense that the search direction is computed using information from either the gradient or a solution of the coarse model. We show that the proposed algorithm is a contraction on the optimal solution and demonstrate excellent performance on experiments with image restoration problems.Open Acces

    Deep Markov Random Field for Image Modeling

    Full text link
    Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.Comment: Accepted at ECCV 201

    Wavelet-Based Enhancement Technique for Visibility Improvement of Digital Images

    Get PDF
    Image enhancement techniques for visibility improvement of color digital images based on wavelet transform domain are investigated in this dissertation research. In this research, a novel, fast and robust wavelet-based dynamic range compression and local contrast enhancement (WDRC) algorithm to improve the visibility of digital images captured under non-uniform lighting conditions has been developed. A wavelet transform is mainly used for dimensionality reduction such that a dynamic range compression with local contrast enhancement algorithm is applied only to the approximation coefficients which are obtained by low-pass filtering and down-sampling the original intensity image. The normalized approximation coefficients are transformed using a hyperbolic sine curve and the contrast enhancement is realized by tuning the magnitude of the each coefficient with respect to surrounding coefficients. The transformed coefficients are then de-normalized to their original range. The detail coefficients are also modified to prevent edge deformation. The inverse wavelet transform is carried out resulting in a lower dynamic range and contrast enhanced intensity image. A color restoration process based on the relationship between spectral bands and the luminance of the original image is applied to convert the enhanced intensity image back to a color image. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some pathological scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for tackling the color constancy problem. The illuminant is modeled having an effect on the image histogram as a linear shift and adjust the image histogram to discount the illuminant. The WDRC algorithm is then applied with a slight modification, i.e. instead of using a linear color restoration, a non-linear color restoration process employing the spectral context relationships of the original image is applied. The proposed technique solves the color constancy issue and the overall enhancement algorithm provides attractive results improving visibility even for scenes with near-zero visibility conditions. In this research, a new wavelet-based image interpolation technique that can be used for improving the visibility of tiny features in an image is presented. In wavelet domain interpolation techniques, the input image is usually treated as the low-pass filtered subbands of an unknown wavelet-transformed high-resolution (HR) image, and then the unknown high-resolution image is produced by estimating the wavelet coefficients of the high-pass filtered subbands. The same approach is used to obtain an initial estimate of the high-resolution image by zero filling the high-pass filtered subbands. Detail coefficients are estimated via feeding this initial estimate to an undecimated wavelet transform (UWT). Taking an inverse transform after replacing the approximation coefficients of the UWT with initially estimated HR image, results in the final interpolated image. Experimental results of the proposed algorithms proved their superiority over the state-of-the-art enhancement and interpolation techniques

    Un arbre de Markov sélectif en fréquence pour la détection de signaux transitoires à faible rapport signal à bruit

    Get PDF
    Nous nous intéressons dans cet article à l’extraction de comportements statistiques multirésolutions pour la caractérisation et la segmentation de signaux transitoires dans un contexte fortement bruité. Ces signaux de courte durée possèdent des composantes fréquentielles très localisées et fortement variables. Le choix du compromis temps/fréquence pour l’étude de ces signaux est donc crucial. Nous nous plaçons de ce fait dans le domaine transformé en paquets d’ondelettes, permettant une analyse fine des variations fréquentielles du signal. Nous proposons un modèle d’arbre de Markov original adapté à la décomposition en paquets d’ondelettes afin d’intégrer l’information multirésolution d’échelle en échelle dans un objectif de segmentation. Nous validons l’approche sur des signaux synthétiques, puis nous illustrons son intérêt applicatif dans un contexte biomédical liée à la détection de signaux transitoires dans les signaux pulmonaires.We deal in this paper with the extraction of multiresolution statistical signatures for the characterization of transient signals in strongly noisy contexts. These short-time signals have sharp and highly variable frequency components. The Time-Frequency analysis window to adopt is then a major issue. Thus we have chosen the wavelet packet domain due to its natural ability to provide multiple time-frequency resolutions. We propose a new oriented Markov model dedicated to the wavelet packet transform, which offers sharp analysis of frequency variations in a signal, locally in time and at several resolutions. We show its efficiency on synthetic signals and we then illustrate its applicative relevance in a biomedical context related to the detection of transient signals in pulmonary sounds

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE

    Wavelet Shrinkage Based Image Denoising using Soft Computing

    Get PDF
    Noise reduction is an open problem and has received considerable attention in the literature for several decades. Over the last two decades, wavelet based methods have been applied to the problem of noise reduction and have been shown to outperform the traditional Wiener filter, Median filter, and modified Lee filter in terms of root mean squared error (MSE), peak signal noise ratio (PSNR) and other evaluation methods. In this research, two approaches for the development of high performance algorithms for de-noising are proposed, both based on soft computing tools, such as fuzzy logic, neural networks, and genetic algorithms. First, an improved additive noise reduction method for digital grey scale nature images, which uses an interval type-2 fuzzy logic system to shrink wavelet coefficients, is proposed. This method is an extension of a recently published approach for additive noise reduction using a type-1 fuzzy logic system based wavelet shrinkage. Unlike the type-1 fuzzy logic system based wavelet shrinkage method, the proposed approach employs a thresholding filter to adjust the wavelet coefficients according to the linguistic uncertainty in neighborhood values, inter-scale dependencies and intra-scale correlations of wavelet coefficients at different resolutions by exploiting the interval type-2 fuzzy set theory. Experimental results show that the proposed approach can efficiently and rapidly remove additive noise from digital grey scale images. Objective analysis and visual observations show that the proposed approach outperforms current fuzzy non-wavelet methods and fuzzy wavelet based methods, and is comparable with some recent but more complex wavelet methods, such as Hidden Markov Model based additive noise de-noising method. The main differences between the proposed approach and other wavelet shrinkage based approaches and the main improvements of the proposed approach are also illustrated in this thesis. Second, another improved method of additive noise reduction is also proposed. The method is based on fusing the results of different filters using a Fuzzy Neural Network (FNN). The proposed method combines the advantages of these filters and has outstanding ability of smoothing out additive noise while preserving details of an image (e.g. edges and lines) effectively. A Genetic Algorithm (GA) is applied to choose the optimal parameters of the FNN. The experimental results show that the proposed method is powerful for removing noise from natural images, and the MSE of this approach is less, and the PSNR of is higher, than that of any individual filters which are used for fusion. Finally, the two proposed approaches are compared with each other from different point of views, such as objective analysis in terms of mean squared error(MSE), peak signal to noise ratio (PSNR), image quality index (IQI) based on quality assessment of distorted images, and Information Theoretic Criterion (ITC) based on a human vision model, computational cost, universality, and human observation. The results show that the proposed FNN based algorithm optimized by GA has the best performance among all testing approaches. Important considerations for these proposed approaches and future work are discussed

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3
    • …
    corecore