640 research outputs found

    Evolutionary Neural Architecture Search for Image Restoration

    Full text link
    Convolutional neural network (CNN) architectures have traditionally been explored by human experts in a manual search process that is time-consuming and ineffectively explores the massive space of potential solutions. Neural architecture search (NAS) methods automatically search the space of neural network hyperparameters in order to find optimal task-specific architectures. NAS methods have discovered CNN architectures that achieve state-of-the-art performance in image classification among other tasks, however the application of NAS to image-to-image regression problems such as image restoration is sparse. This paper proposes a NAS method that performs computationally efficient evolutionary search of a minimally constrained network architecture search space. The performance of architectures discovered by the proposed method is evaluated on a variety of image restoration tasks applied to the ImageNet64x64 dataset, and compared with human-engineered CNN architectures. The best neural architectures discovered using only 2 GPU-hours of evolutionary search exhibit comparable performance to the human-engineered baseline architecture.Comment: Paper accepted to IJCNN 201

    NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image

    Full text link
    This paper reviews the second challenge on spectral reconstruction from RGB images, i.e., the recovery of whole-scene hyperspectral (HS) information from a 3-channel RGB image. As in the previous challenge, two tracks were provided: (i) a "Clean" track where HS images are estimated from noise-free RGBs, the RGB images are themselves calculated numerically using the ground-truth HS images and supplied spectral sensitivity functions (ii) a "Real World" track, simulating capture by an uncalibrated and unknown camera, where the HS images are recovered from noisy JPEG-compressed RGB images. A new, larger-than-ever, natural hyperspectral image data set is presented, containing a total of 510 HS images. The Clean and Real World tracks had 103 and 78 registered participants respectively, with 14 teams competing in the final testing phase. A description of the proposed methods, alongside their challenge scores and an extensive evaluation of top performing methods is also provided. They gauge the state-of-the-art in spectral reconstruction from an RGB image

    DeepLight: Learning Illumination for Unconstrained Mobile Mixed Reality

    Full text link
    We present a learning-based method to infer plausible high dynamic range (HDR), omnidirectional illumination given an unconstrained, low dynamic range (LDR) image from a mobile phone camera with a limited field of view (FOV). For training data, we collect videos of various reflective spheres placed within the camera's FOV, leaving most of the background unoccluded, leveraging that materials with diverse reflectance functions reveal different lighting cues in a single exposure. We train a deep neural network to regress from the LDR background image to HDR lighting by matching the LDR ground truth sphere images to those rendered with the predicted illumination using image-based relighting, which is differentiable. Our inference runs at interactive frame rates on a mobile device, enabling realistic rendering of virtual objects into real scenes for mobile mixed reality. Training on automatically exposed and white-balanced videos, we improve the realism of rendered objects compared to the state-of-the art methods for both indoor and outdoor scenes

    Towards a Robust Parameterization for Conditioning Facies Models Using Deep Variational Autoencoders and Ensemble Smoother

    Full text link
    The literature about history matching is vast and despite the impressive number of methods proposed and the significant progresses reported in the last decade, conditioning reservoir models to dynamic data is still a challenging task. Ensemble-based methods are among the most successful and efficient techniques currently available for history matching. These methods are usually able to achieve reasonable data matches, especially if an iterative formulation is employed. However, they sometimes fail to preserve the geological realism of the model, which is particularly evident in reservoir with complex facies distributions. This occurs mainly because of the Gaussian assumptions inherent in these methods. This fact has encouraged an intense research activity to develop parameterizations for facies history matching. Despite the large number of publications, the development of robust parameterizations for facies remains an open problem. Deep learning techniques have been delivering impressive results in a number of different areas and the first applications in data assimilation in geoscience have started to appear in literature. The present paper reports the current results of our investigations on the use of deep neural networks towards the construction of a continuous parameterization of facies which can be used for data assimilation with ensemble methods. Specifically, we use a convolutional variational autoencoder and the ensemble smoother with multiple data assimilation. We tested the parameterization in three synthetic history-matching problems with channelized facies. We focus on this type of facies because they are among the most challenging to preserve after the assimilation of data. The parameterization showed promising results outperforming previous methods and generating well-defined channelized facies.Comment: 32 pages, 24 figure

    DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

    Full text link
    Conditional Generative Adversarial Networks (GANs) for cross-domain image-to-image translation have made much progress recently. Depending on the task complexity, thousands to millions of labeled image pairs are needed to train a conditional GAN. However, human labeling is expensive, even impractical, and large quantities of data may not always be available. Inspired by dual learning from natural language translation, we develop a novel dual-GAN mechanism, which enables image translators to be trained from two sets of unlabeled images from two domains. In our architecture, the primal GAN learns to translate images from domain U to those in domain V, while the dual GAN learns to invert the task. The closed loop made by the primal and dual tasks allows images from either domain to be translated and then reconstructed. Hence a loss function that accounts for the reconstruction error of images can be used to train the translators. Experiments on multiple image translation tasks with unlabeled data show considerable performance gain of DualGAN over a single GAN. For some tasks, DualGAN can even achieve comparable or slightly better results than conditional GAN trained on fully labeled data.Comment: Accepted by ICCV 201

    Deep Matching and Validation Network -- An End-to-End Solution to Constrained Image Splicing Localization and Detection

    Full text link
    Image splicing is a very common image manipulation technique that is sometimes used for malicious purposes. A splicing detec- tion and localization algorithm usually takes an input image and produces a binary decision indicating whether the input image has been manipulated, and also a segmentation mask that corre- sponds to the spliced region. Most existing splicing detection and localization pipelines suffer from two main shortcomings: 1) they use handcrafted features that are not robust against subsequent processing (e.g., compression), and 2) each stage of the pipeline is usually optimized independently. In this paper we extend the formulation of the underlying splicing problem to consider two input images, a query image and a potential donor image. Here the task is to estimate the probability that the donor image has been used to splice the query image, and obtain the splicing masks for both the query and donor images. We introduce a novel deep convolutional neural network architecture, called Deep Matching and Validation Network (DMVN), which simultaneously localizes and detects image splicing. The proposed approach does not depend on handcrafted features and uses raw input images to create deep learned representations. Furthermore, the DMVN is end-to-end op- timized to produce the probability estimates and the segmentation masks. Our extensive experiments demonstrate that this approach outperforms state-of-the-art splicing detection methods by a large margin in terms of both AUC score and speed.Comment: 9 pages, 10 figure

    Generating 3D structures from a 2D slice with GAN-based dimensionality expansion

    Full text link
    Generative adversarial networks (GANs) can be trained to generate 3D image data, which is useful for design optimisation. However, this conventionally requires 3D training data, which is challenging to obtain. 2D imaging techniques tend to be faster, higher resolution, better at phase identification and more widely available. Here, we introduce a generative adversarial network architecture, SliceGAN, which is able to synthesise high fidelity 3D datasets using a single representative 2D image. This is especially relevant for the task of material microstructure generation, as a cross-sectional micrograph can contain sufficient information to statistically reconstruct 3D samples. Our architecture implements the concept of uniform information density, which both ensures that generated volumes are equally high quality at all points in space, and that arbitrarily large volumes can be generated. SliceGAN has been successfully trained on a diverse set of materials, demonstrating the widespread applicability of this tool. The quality of generated micrographs is shown through a statistical comparison of synthetic and real datasets of a battery electrode in terms of key microstructural metrics. Finally, we find that the generation time for a 10810^8 voxel volume is on the order of a few seconds, yielding a path for future studies into high-throughput microstructural optimisation

    Robust Compressive Phase Retrieval via Deep Generative Priors

    Full text link
    This paper proposes a new framework to regularize the highly ill-posed and non-linear phase retrieval problem through deep generative priors using simple gradient descent algorithm. We experimentally show effectiveness of proposed algorithm for random Gaussian measurements (practically relevant in imaging through scattering media) and Fourier friendly measurements (relevant in optical set ups). We demonstrate that proposed approach achieves impressive results when compared with traditional hand engineered priors including sparsity and denoising frameworks for number of measurements and robustness against noise. Finally, we show the effectiveness of the proposed approach on a real transmission matrix dataset in an actual application of multiple scattering media imaging.Comment: Preprint. Work in progres

    Low-rank tensor completion: a Riemannian manifold preconditioning approach

    Full text link
    We propose a novel Riemannian manifold preconditioning approach for the tensor completion problem with rank constraint. A novel Riemannian metric or inner product is proposed that exploits the least-squares structure of the cost function and takes into account the structured symmetry that exists in Tucker decomposition. The specific metric allows to use the versatile framework of Riemannian optimization on quotient manifolds to develop preconditioned nonlinear conjugate gradient and stochastic gradient descent algorithms for batch and online setups, respectively. Concrete matrix representations of various optimization-related ingredients are listed. Numerical comparisons suggest that our proposed algorithms robustly outperform state-of-the-art algorithms across different synthetic and real-world datasets.Comment: The 33rd International Conference on Machine Learning (ICML 2016). arXiv admin note: substantial text overlap with arXiv:1506.0215

    Deep Component Analysis via Alternating Direction Neural Networks

    Full text link
    Despite a lack of theoretical understanding, deep neural networks have achieved unparalleled performance in a wide range of applications. On the other hand, shallow representation learning with component analysis is associated with rich intuition and theory, but smaller capacity often limits its usefulness. To bridge this gap, we introduce Deep Component Analysis (DeepCA), an expressive multilayer model formulation that enforces hierarchical structure through constraints on latent variables in each layer. For inference, we propose a differentiable optimization algorithm implemented using recurrent Alternating Direction Neural Networks (ADNNs) that enable parameter learning using standard backpropagation. By interpreting feed-forward networks as single-iteration approximations of inference in our model, we provide both a novel theoretical perspective for understanding them and a practical technique for constraining predictions with prior knowledge. Experimentally, we demonstrate performance improvements on a variety of tasks, including single-image depth prediction with sparse output constraints
    • …
    corecore