255 research outputs found

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces

    Designing interactive ambient multimedia applications: requirements and implementation challenges

    Get PDF
    Ambient intelligence opens new possibilities for interactive multimedia, leading towards applications where the selection, generation and playback of multimedia content can be directed and influenced by multiple users in an ambient sensor network. In this paper, we derive the basic requirements for a flexible infrastructure that can support the integration of multimedia and ambient intelligence, and enable rapid tailoring of interactive multimedia applications. We describe our implementation of the proposed infrastructure, and demonstrate its functionality through several prototype application

    Designing interactive ambient multimedia applications: requirements and implementation challenges

    Get PDF
    Ambient intelligence opens new possibilities for interactive multimedia, leading towards applications where the selection, generation and playback of multimedia content can be directed and influenced by multiple users in an ambient sensor network. In this paper, we derive the basic requirements for a flexible infrastructure that can support the integration of multimedia and ambient intelligence, and enable rapid tailoring of interactive multimedia applications. We describe our implementation of the proposed infrastructure, and demonstrate its functionality through several prototype application

    Modular MRI Guided Device Development System: Development, Validation and Applications

    Get PDF
    Since the first robotic surgical intervention was performed in 1985 using a PUMA industrial manipulator, development in the field of surgical robotics has been relatively fast paced, despite the tremendous costs involved in developing new robotic interventional devices. This is due to the clear advantages to augmented a clinicians skill and dexterity with the precision and reliability of computer controlled motion. A natural extension of robotic surgical intervention is the integration of image guided interventions, which give the promise of reduced trauma, procedure time and inaccuracies. Despite magnetic resonance imaging (MRI) being one of the most effective imaging modalities for visualizing soft tissue structures within the body, MRI guided surgical robotics has been frustrated by the high magnetic field in the MRI image space and the extreme sensitivity to electromagnetic interference. The primary contributions of this dissertation relate to enabling the use of direct, live MR imaging to guide and assist interventional procedures. These are the two focus areas: creation both of an integrated MRI-guided development platform and of a stereotactic neural intervention system. The integrated series of modules of the development platform represent a significant advancement in the practice of creating MRI guided mechatronic devices, as well as an understanding of design requirements for creating actuated devices to operate within a diagnostic MRI. This knowledge was gained through a systematic approach to understanding, isolating, characterizing, and circumventing difficulties associated with developing MRI-guided interventional systems. These contributions have been validated on the levels of the individual modules, the total development system, and several deployed interventional devices. An overview of this work is presented with a summary of contributions and lessons learned along the way

    NASA Tech Briefs, July 2010

    Get PDF
    Topics covered include: Wirelessly Interrogated Wear or Temperature Sensors; Processing Nanostructured Sensors Using Microfabrication Techniques; Optical Pointing Sensor; Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging; High-Temperature Optical Sensor; Integral Battery Power Limiting Circuit for Intrinsically Safe Applications; Configurable Multi-Purpose Processor; Squeezing Alters Frequency Tuning of WGM Optical Resonator; Automated Computer Access Request System; Range Safety for an Autonomous Flight Safety System; Fast and Easy Searching of Files in Unisys 2200 Computers; Parachute Drag Model; Evolutionary Scheduler for the Deep Space Network; Modular Habitats Comprising Rigid and Inflatable Modules; More About N2O-Based Propulsion and Breathable-Gas Systems; Ultrasonic/Sonic Rotary-Hammer Drills; Miniature Piezoelectric Shaker for Distribution of Unconsolidated Samples to Instrument Cells; Lunar Soil Particle Separator; Advanced Aerobots for Scientific Exploration; Miniature Bioreactor System for Long-Term Cell Culture; Electrochemical Detection of Multiple Bioprocess Analytes; Fabrication and Modification of Nanoporous Silicon Particles; High-Altitude Hydration System; Photon Counting Using Edge-Detection Algorithm; Holographic Vortex Coronagraph; Optical Structural Health Monitoring Device; Fuel-Cell Power Source Based on Onboard Rocket Propellants; Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments; Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS; Improved Speed and Functionality of a 580-GHz Imaging Radar; Bolometric Device Based on Fluxoid Quantization; Algorithms for Learning Preferences for Sets of Objects; Model for Simulating a Spiral Software-Development Process; Algorithm That Synthesizes Other Algorithms for Hashing; Algorithms for High-Speed Noninvasive Eye-Tracking System; and Adapting ASPEN for Orbital Express

    NASA Tech Briefs, July 2006

    Get PDF
    Topics covered include: Airport Remote Tower Sensor Systems; Implantable Wireless MEMS Sensors for Medical Uses; Embedded Sensors for Measuring Surface Regression; Coordinating an Autonomous Earth-Observing Sensorweb; Range-Measuring Video Sensors; Stability Enhancement of Polymeric Sensing Films Using Fillers; Sensors for Using Times of Flight to Measure Flow Velocities; Receiver Would Control Phasing of a Phased-Array Antenna; Modern Design of Resonant Edge-Slot Array Antennas; Carbon-Nanotube Schottky Diodes; Simplified Optics and Controls for Laser Communications; Coherent Detection of High-Rate Optical PPM Signals; Multichannel Phase and Power Detector; Using Satellite Data in Weather Forecasting: I; Using Dissimilarity Metrics to Identify Interesting Designs; X-Windows PVT Widget Class; Shuttle Data Center File-Processing Tool in Java; Statistical Evaluation of Utilization of the ISS; Nanotube Dispersions Made With Charged Surfactant; Aerogels for Thermal Insulation of Thermoelectric Devices; Low-Density, Creep-Resistant Single-Crystal Superalloys; Excitations for Rapidly Estimating Flight-Control Parameters; Estimation of Stability and Control Derivatives of an F-15; Tool for Coupling a Torque Wrench to a Round Cable Connector; Ultrasonically Actuated Tools for Abrading Rock Surfaces; Active Struts With Variable Spring Stiffness and Damping; Multiaxis, Lightweight, Computer-Controlled Exercise System; Dehydrating and Sterilizing Wastes Using Supercritical CO2; Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium; Ice-Borehole Probe; Alpha-Voltaic Sources Using Diamond as Conversion Medium; White-Light Whispering-Gallery-Mode Optical Resonators; Controlling Attitude of a Solar-Sail Spacecraft Using Vanes; and Wire-Mesh-Based Sorber for Removing Contaminants from Air

    A multimodal framework for interactive sonification and sound-based communication

    Get PDF

    Bendit_I/O: A System for Extending Mediated and Networked Performance Techniques to Circuit-Bent Devices

    Get PDF
    Circuit bending—the act of modifying a consumer device\u27s internal circuitry in search of new, previously-unintended responses—provides artists with a chance to subvert expectations for how a certain piece of hardware should be utilized, asking them to view everyday objects as complex electronic instruments. Along with the ability to create avant-garde instruments from unique and nostalgic sound sources, the practice of circuit bending serves as a methodology for exploring the histories of discarded objects through activism, democratization, and creative resurrection. While a rich history of circuit bending continues to inspire artists today, the recent advent of smart musical instruments and the growing number of hybrid tools available for creating connective musical experiences through networks asks us to reconsider the ways in which repurposed devices can continue to play a role in modern sonic art. Bendit_I/O serves as a synthesis of the technologies and aesthetics of the circuit bending and Networked Musical Performance (NMP) practices. The framework extends techniques native to the practices of telematic and network art to hacked hardware so that artists can design collaborative and mediated experiences that incorporate old devices into new realities. Consisting of user-friendly hardware and software components, Bendit_I/O aims to be an entry point for novice artists into both of the creative realms it brings together. This document presents details on the components of the Bendit_I/O framework along with an analysis of their use in three new compositions. Additional research serves to place the framework in historical context through literature reviews of previous work undertaken in the circuit bending and networked musical performance practices. Additionally, a case is made for performing hacked consumer hardware across a wireless network, emphasizing how extensions to current circuit bending and NMP practices provide the ability to probe our relationships with hardware through collaborative, mediated, and multimodal methods
    • …
    corecore