2,177 research outputs found

    Generating Diffusion MRI scalar maps from T1 weighted images using generative adversarial networks

    Full text link
    Diffusion magnetic resonance imaging (diffusion MRI) is a non-invasive microstructure assessment technique. Scalar measures, such as FA (fractional anisotropy) and MD (mean diffusivity), quantifying micro-structural tissue properties can be obtained using diffusion models and data processing pipelines. However, it is costly and time consuming to collect high quality diffusion data. Here, we therefore demonstrate how Generative Adversarial Networks (GANs) can be used to generate synthetic diffusion scalar measures from structural T1-weighted images in a single optimized step. Specifically, we train the popular CycleGAN model to learn to map a T1 image to FA or MD, and vice versa. As an application, we show that synthetic FA images can be used as a target for non-linear registration, to correct for geometric distortions common in diffusion MRI

    Characterization of age-related microstructural changes in locus coeruleus and substantia nigra pars compacta.

    Get PDF
    Locus coeruleus (LC) and substantia nigra pars compacta (SNpc) degrade with normal aging, but not much is known regarding how these changes manifest in MRI images, or whether these markers predict aspects of cognition. Here, we use high-resolution diffusion-weighted MRI to investigate microstructural and compositional changes in LC and SNpc in young and older adult cohorts, as well as their relationship with cognition. In LC, the older cohort exhibited a significant reduction in mean and radial diffusivity, but a significant increase in fractional anisotropy compared with the young cohort. We observed a significant correlation between the decrease in LC mean, axial, and radial diffusivities and measures examining cognition (Rey Auditory Verbal Learning Test delayed recall) in the older adult cohort. This observation suggests that LC is involved in retaining cognitive abilities. In addition, we observed that iron deposition in SNpc occurs early in life and continues during normal aging

    A diffusion tensor imaging study of age-related changes in the white matter structural integrity in a common chimpanzee

    Get PDF
    Diffusion Tensor Magnetic Resonance Imaging was used to examine the age-related changes in white matter structural integrity in the common chimpanzee. Fractional Anisotropy(FA), a measure derived from the diffusion tensor data is sensitive to developmental and pathological changes in axonal density, myelination, size and coherence of organization of fibers within a voxel and thus reflects the white matter structural integrity. There is substantial evidence that white matter structural integrity decreases with age in humans. The long-term goal of this study is to compare the age-related changes in the white matter structural integrity among humans and chimpanzess to provide potential insights into the unique features of human aging. Different methods, including Region Of Interest (ROI) analysis, Tract Based Spatial Statistics (TBSS) are used to describe age-related changes in FA in a group of 21 chimpanzees. Strengths and limitations of these methods were discussed.M.S.Committee Chair: James K. Rilling; Committee Chair: Xiaoping Hu; Committee Member: Shella Keilholz; Committee Member: Todd M. Preus

    Correction of spatial distortion in magnetic resonance imaging

    Get PDF
    Dissertation to Obtain the Degree of Master in Biomedical EngineeringMagnetic Resonance Imaging (MRI) has been a major investigation and research focus among scientific and medical communities. So, new hardware with superior magnetic fields and faster sequences has been developed. However, these improvements result in intensity and spatial distortions, particularly in fast sequences, as Echo Plana Imaging (EPI), used in functional and diffusion-weighed MRI (fMRI and DW-MRI). Therefore, correction of spatial distortion is useful to obtain a higher quality in this kind of images. This project contains two major parts. The first part consists in simulating MRI data required for assessing the performance of Registration methods and optimizing parameters. To assess the methods five evaluation metrics were calculated between the corrected data and an undistorted EPI, namely: Root Mean Square (RMS); Normalized Mutual Information (NMI), Squared Correlation Coefficient(SCC); Euclidean Distance of Centres of Mass (CM) and Dice Coefficient of segmented images. In brief, this part validates the applied Registration correction method. The project’s second part includes correction of real images, obtained at a Clinical Partner. Real images are diffusion weighted MRI data with different b-values (gradient strength coefficient), allowing performance assessment of different methods on images with increasing b-values and decreasing SNR. The methods tested on real data were Registration, Field Map correction and a new proposed pipeline, which consists in performing a Field Map correction after a registration process. To assess the accuracy of these methods on real data, we used the same evaluation metrics, as for simulated data, except RMS and Dice Coefficient. At the end, it was concluded that Registration-based methods are better than Field Map, and that the new proposed pipeline produces some improvements in the registration. Regarding the influence of b-value on the correction, it is important to say that the methods performed using images with higher b’s showed more improvements in regarding metric values, but the behaviour is similar for all b-values

    Magnetic Resonance Imaging of the Brain in Moving Subjects. Application of Fetal, Neonatal and Adult Brain Studies

    No full text
    Imaging in the presence of subject motion has been an ongoing challenge for magnetic resonance imaging (MRI). Motion makes MRI data inconsistent, causing artifacts in conventional anatomical imaging as well as invalidating diffusion tensor imaging (DTI) reconstruction. In this thesis some of the important issues regarding the acquisition and reconstruction of anatomical and DTI imaging of moving subjects are addressed; methods to achieve high resolution and high signalto- noise ratio (SNR) volume data are proposed. An approach has been developed that uses multiple overlapped dynamic single shot slice by slice imaging combined with retrospective alignment and data fusion to produce self consistent 3D volume images under subject motion. We term this method as snapshot MRI with volume reconstruction or SVR. The SVR method has been performed successfully for brain studies on subjects that cannot stay still, and in some cases were moving substantially during scanning. For example, awake neonates, deliberately moved adults and, especially, on fetuses, for which no conventional high resolution 3D method is currently available. Fine structure of the in-utero fetal brain is clearly revealed for the first time with substantially improved SNR. The SVR method has been extended to correct motion artifacts from conventional multi-slice sequences when the subject drifts in position during data acquisition. Besides anatomical imaging, the SVR method has also been further extended to DTI reconstruction when there is subject motion. This has been validated successfully from an adult who was deliberately moving and then applied to inutero fetal brain imaging, which no conventional high resolution 3D method is currently available. Excellent fetal brain 3D apparent diffusion coefficient (ADC) maps in high resolution have been achieved for the first time as well as promising fractional Anisotropy (FA) maps. Pilot clinical studies using SVR reconstructed data to study fetal brain development in-utero have been performed. Growth curves for the normally developing fetal brain have been devised by the quantification of cerebral and cerebellar volumes as well as some one dimensional measurements. A Verhulst model is proposed to describe these growth curves, and this approach has achieved a correlation over 0.99 between the fitted model and actual data
    • …
    corecore