430 research outputs found

    Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI.

    Get PDF
    Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Heterogeneous enhancement pattern in DCE-MRI reveals the morphology of normal lymph nodes: an experimental study

    Get PDF
    Purpose: To investigate the heterogeneous enhancement pattern in normal lymph nodes of healthy mice by different albumin-binding contrast agents. Methods: The enhancement of normal lymph nodes was assessed in mice by dynamic contrast-enhanced MRI (DCE-MRI) after the administration of two contrast agents characterized by different albumin-binding properties: gadopentetate dimeglumine (Gd-DTPA) and gadobenate dimeglumine (Gd-BOPTA). To take into account potential heterogeneities of the contrast uptake in the lymph nodes, k-means cluster analysis was performed on DCE-MRI data. Cluster spatial distribution was visually assessed. Statistical comparison among clusters and contrast agents was performed on semiquantitative parameters (AUC, wash-in rate, and wash-out rate) and on the relative size of the segmented clusters. Results: Cluster analysis of DCE-MRI data revealed at least two main clusters, localized in the outer portion and in the inner portion of each lymph node. With both contrast agents, AUC (p < 0.01) and wash-in (p < 0.05) rates were greater in the inner cluster, which also showed a steeper wash-out rate than the outer cluster (Gd-BOPTA, p < 0.01; Gd-DTPA, p=0.056). The size of the outer cluster was greater than that of the inner cluster by Gd-DTPA (p < 0.05) and Gd-BOPTA (p < 0.01). The enhancement pattern of Gd-DTPA was not significantly different from the enhancement pattern of Gd-BOPTA. Conclusion: DCE-MRI in normal lymph nodes shows a characteristic heterogeneous pattern, discriminating the periphery and the central portion of the lymph nodes. Such a pattern deserves to be investigated as a diagnostic marker for lymph node staging

    Pattern identification of biomedical images with time series: contrasting THz pulse imaging with DCE-MRIs

    Get PDF
    Objective We provide a survey of recent advances in biomedical image analysis and classification from emergent imaging modalities such as terahertz (THz) pulse imaging (TPI) and dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) and identification of their underlining commonalities. Methods Both time and frequency domain signal pre-processing techniques are considered: noise removal, spectral analysis, principal component analysis (PCA) and wavelet transforms. Feature extraction and classification methods based on feature vectors using the above processing techniques are reviewed. A tensorial signal processing de-noising framework suitable for spatiotemporal association between features in MRI is also discussed. Validation Examples where the proposed methodologies have been successful in classifying TPIs and DCE-MRIs are discussed. Results Identifying commonalities in the structure of such heterogeneous datasets potentially leads to a unified multi-channel signal processing framework for biomedical image analysis. Conclusion The proposed complex valued classification methodology enables fusion of entire datasets from a sequence of spatial images taken at different time stamps; this is of interest from the viewpoint of inferring disease proliferation. The approach is also of interest for other emergent multi-channel biomedical imaging modalities and of relevance across the biomedical signal processing community

    DCE-MRI and DWI Integration for Breast Lesions Assessment and Heterogeneity Quantification

    Get PDF
    In order to better predict and follow treatment responses in cancer patients, there is growing interest in noninvasively characterizing tumor heterogeneity based on MR images possessing different contrast and quantitative information. This requires mechanisms for integrating such data and reducing the data dimensionality to levels amenable to interpretation by human readers. Here we propose a two-step pipeline for integrating diffusion and perfusion MRI that we demonstrate in the quantification of breast lesion heterogeneity. First, the images acquired with the two modalities are aligned using an intermodal registration. Dissimilarity-based clustering is then performed exploiting the information coming from both modalities. To this end an ad hoc distance metric is developed and tested for tuning the weighting for the two modalities. The distributions of the diffusion parameter values in subregions identified by the algorithm are extracted and compared through nonparametric testing for posterior evaluation of the tissue heterogeneity. Results show that the joint exploitation of the information brought by DCE and DWI leads to consistent results accounting for both perfusion and microstructural information yielding a greater refinement of the segmentation than the separate processing of the two modalities, consistent with that drawn manually by a radiologist with access to the same data
    corecore