2,347 research outputs found

    Attenuation Imaging with Pulse-Echo Ultrasound based on an Acoustic Reflector

    Full text link
    Ultrasound attenuation is caused by absorption and scattering in tissue and is thus a function of tissue composition, hence its imaging offers great potential for screening and differential diagnosis. In this paper we propose a novel method that allows to reconstruct spatial attenuation distribution in tissue based on computed tomography, using reflections from a passive acoustic reflector. This requires a standard ultrasound transducer operating in pulse-echo mode, thus it can be implemented on conventional ultrasound systems with minor modifications. We use calibration with water measurements in order to normalize measurements for quantitative imaging of attenuation. In contrast to earlier techniques, we herein show that attenuation reconstructions are possible without any geometric prior on the inclusion location or shape. We present a quantitative evaluation of reconstructions based on simulations, gelatin phantoms, and ex-vivo bovine skeletal muscle tissue, achieving contrast-to-noise ratio of up to 2.3 for an inclusion in ex-vivo tissue.Comment: Accepted at MICCAI 2019 (International Conference on Medical Image Computing and Computer Assisted Intervention

    Frequency-Dependent Attenuation Reconstruction with an Acoustic Reflector

    Full text link
    Attenuation of ultrasound waves varies with tissue composition, hence its estimation offers great potential for tissue characterization and diagnosis and staging of pathology. We recently proposed a method that allows to spatially reconstruct the distribution of the overall ultrasound attenuation in tissue based on computed tomography, using reflections from a passive acoustic reflector. This requires a standard ultrasound transducer operating in pulse-echo mode and a calibration protocol using water measurements, thus it can be implemented on conventional ultrasound systems with minor adaptations. Herein, we extend this method by additionally estimating and imaging the frequency-dependent nature of local ultrasound attenuation for the first time. Spatial distributions of attenuation coefficient and exponent are reconstructed, enabling an elaborate and expressive tissue-specific characterization. With simulations, we demonstrate that our proposed method yields a low reconstruction error of 0.04dB/cm at 1MHz for attenuation coefficient and 0.08 for the frequency exponent. With tissue-mimicking phantoms and ex-vivo bovine muscle samples, a high reconstruction contrast as well as reproducibility are demonstrated. Attenuation exponents of a gelatin-cellulose mixture and an ex-vivo bovine muscle sample were found to be, respectively, 1.4 and 0.5 on average, from images of their heterogeneous compositions. Such frequency-dependent parametrization could enable novel imaging and diagnostic techniques, as well as help attenuation compensation other ultrasound-based imaging techniques

    Learning the Imaging Model of Speed-of-Sound Reconstruction via a Convolutional Formulation

    Full text link
    Speed-of-sound (SoS) is an emerging ultrasound contrast modality, where pulse-echo techniques using conventional transducers offer multiple benefits. For estimating tissue SoS distributions, spatial domain reconstruction from relative speckle shifts between different beamforming sequences is a promising approach. This operates based on a forward model that relates the sought local values of SoS to observed speckle shifts, for which the associated image reconstruction inverse problem is solved. The reconstruction accuracy thus highly depends on the hand-crafted forward imaging model. In this work, we propose to learn the SoS imaging model based on data. We introduce a convolutional formulation of the pulse-echo SoS imaging problem such that the entire field-of-view requires a single unified kernel, the learning of which is then tractable and robust. We present least-squares estimation of such convolutional kernel, which can further be constrained and regularized for numerical stability. In experiments, we show that a forward model learned from k-Wave simulations improves the median contrast of SoS reconstructions by 63%, compared to a conventional hand-crafted line-based wave-path model. This simulation-learned model generalizes successfully to acquired phantom data, nearly doubling the SoS contrast compared to the conventional hand-crafted alternative. We demonstrate equipment-specific and small-data regime feasibility by learning a forward model from a single phantom image, where our learned model quadruples the SoS contrast compared to the conventional hand-crafted model. On in-vivo data, the simulation- and phantom-learned models respectively exhibit impressive 7 and 10 folds contrast improvements over the conventional model

    Ultrasound Signal Processing: From Models to Deep Learning

    Get PDF
    Medical ultrasound imaging relies heavily on high-quality signal processing algorithms to provide reliable and interpretable image reconstructions. Hand-crafted reconstruction methods, often based on approximations of the underlying measurement model, are useful in practice, but notoriously fall behind in terms of image quality. More sophisticated solutions, based on statistical modelling, careful parameter tuning, or through increased model complexity, can be sensitive to different environments. Recently, deep learning based methods have gained popularity, which are optimized in a data-driven fashion. These model-agnostic methods often rely on generic model structures, and require vast training data to converge to a robust solution. A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge. These model-based solutions yield high robustness, and require less trainable parameters and training data than conventional neural networks. In this work we provide an overview of these methods from the recent literature, and discuss a wide variety of ultrasound applications. We aim to inspire the reader to further research in this area, and to address the opportunities within the field of ultrasound signal processing. We conclude with a future perspective on these model-based deep learning techniques for medical ultrasound applications

    DeepMB: Deep neural network for real-time optoacoustic image reconstruction with adjustable speed of sound

    Full text link
    Multispectral optoacoustic tomography (MSOT) is a high-resolution functional imaging modality that can non-invasively access a broad range of pathophysiological phenomena by quantifying the contrast of endogenous chromophores in tissue. Real-time imaging is imperative to translate MSOT into clinical imaging, visualize dynamic pathophysiological changes associated with disease progression, and enable in situ diagnoses. Model-based reconstruction affords state-of-the-art optoacoustic images; however, the image quality provided by model-based reconstruction remains inaccessible during real-time imaging because the algorithm is iterative and computationally demanding. Deep learning affords faster reconstruction, but the lack of ground truth training data can lead to reduced image quality for in vivo data. We introduce a framework, termed DeepMB, that achieves accurate optoacoustic image reconstruction for arbitrary input data in 31 ms per image by expressing model-based reconstruction with a deep neural network. DeepMB facilitates accurate generalization to experimental test data through training on signals synthesized from real-world images and ground truth images generated by model-based reconstruction. The framework affords in-focus images for a broad range of anatomical locations because it supports dynamic adjustment of the reconstruction speed of sound during imaging. Furthermore, DeepMB is compatible with the data rates and image sizes of modern multispectral optoacoustic tomography scanners. We evaluate DeepMB on a diverse dataset of in vivo images and demonstrate that the framework reconstructs images 1000 times faster than the iterative model-based reference method while affording near-identical image qualities. Accurate and real-time image reconstructions with DeepMB can enable full access to the high-resolution and multispectral contrast of handheld optoacoustic tomography
    • …
    corecore