4,631 research outputs found

    A High performance and low cost hardware arcitecture for H.264 transform and quantization algorithms

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of forward transform and quantization and inverse transform and quantization algorithms used in H.264 / MPEG4 Part 10 video coding standard. The hard-ware architecture is based on a reconfigurable datapath with only one multiplier. This hardware is designed to be used as part of a complete low power H.264 video coding system for portable appli-cations. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 81 MHz in a Xilinx Virtex II FPGA and it is verified to work at 210 MHz in a 0.18´ ASIC implementation. The FPGA and ASIC implementations can code 27 and 70 VGA frames (640x480) per second respectively

    Phaseless computational imaging with a radiating metasurface

    Full text link
    Computational imaging modalities support a simplification of the active architectures required in an imaging system and these approaches have been validated across the electromagnetic spectrum. Recent implementations have utilized pseudo-orthogonal radiation patterns to illuminate an object of interest---notably, frequency-diverse metasurfaces have been exploited as fast and low-cost alternative to conventional coherent imaging systems. However, accurately measuring the complex-valued signals in the frequency domain can be burdensome, particularly for sub-centimeter wavelengths. Here, computational imaging is studied under the relaxed constraint of intensity-only measurements. A novel 3D imaging system is conceived based on 'phaseless' and compressed measurements, with benefits from recent advances in the field of phase retrieval. In this paper, the methodology associated with this novel principle is described, studied, and experimentally demonstrated in the microwave range. A comparison of the estimated images from both complex valued and phaseless measurements are presented, verifying the fidelity of phaseless computational imaging.Comment: 18 pages, 18 figures, articl
    corecore