8,715 research outputs found

    Image Quality Assessment by Saliency Maps

    Get PDF
    Image Quality Assessment (IQA) is an interesting challenge for image processing applications. The goal of IQA is to replace human judgement of perceived image quality with a machine evaluation. A large number of methods have been proposed to evaluate the quality of an image which may be corrupted by noise, distorted during acquisition, transmission, compression, etc. Many methods, in some cases, do not agree with human judgment because they are not correlated with human visual perception. In the last years the most modern IQA models and metrics considered visual saliency as a fundamental issue. The aim of visual saliency is to produce a saliency map that replicates the human visual system (HVS) behaviour in visual attention process. In this paper we show the relationship between different kind of visual saliency maps and IQA measures. We particularly perform a lot of comparisons between Saliency-Based IQA Measures and traditional Objective IQA Measure. In Saliency scientific literature there are many different approaches for saliency maps, we want to investigate which is best one for IQA metrics

    Retinal Image Quality Classification Using Neurobiological Models of the Human Visual System

    Get PDF
    Retinal image quality assessment (IQA) algorithms use different hand crafted features without considering the important role of the human visual system (HVS). We solve the IQA problem using the principles behind the working of the HVS. Unsupervised information from local saliency maps and supervised information from trained convolutional neural networks (CNNs) are combined to make a final decision on image quality. A novel algorithm is proposed that calculates saliency values for every image pixel at multiple scales to capture global and local image information. This extracts generalized image information in an unsupervised manner while CNNs provide a principled approach to feature learning without the need to define hand-crafted features. The individual classification decisions are fused by weighting them according to their confidence scores. Experimental results on real datasets demonstrate the superior performance of our proposed algorithm over competing methods

    How is Gaze Influenced by Image Transformations? Dataset and Model

    Full text link
    Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time consuming and expensive. Most of current studies on human attention and saliency modeling have used high quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial network (dubbed GazeGAN). A modified UNet is proposed as the generator of the GazeGAN, which combines classic skip connections with a novel center-surround connection (CSC), in order to leverage multi level features. We also propose a histogram loss based on Alternative Chi Square Distance (ACS HistLoss) to refine the saliency map in terms of luminance distribution. Extensive experiments and comparisons over 3 datasets indicate that GazeGAN achieves the best performance in terms of popular saliency evaluation metrics, and is more robust to various perturbations. Our code and data are available at: https://github.com/CZHQuality/Sal-CFS-GAN

    Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment

    Full text link
    We present a deep neural network-based approach to image quality assessment (IQA). The network is trained end-to-end and comprises ten convolutional layers and five pooling layers for feature extraction, and two fully connected layers for regression, which makes it significantly deeper than related IQA models. Unique features of the proposed architecture are that: 1) with slight adaptations it can be used in a no-reference (NR) as well as in a full-reference (FR) IQA setting and 2) it allows for joint learning of local quality and local weights, i.e., relative importance of local quality to the global quality estimate, in an unified framework. Our approach is purely data-driven and does not rely on hand-crafted features or other types of prior domain knowledge about the human visual system or image statistics. We evaluate the proposed approach on the LIVE, CISQ, and TID2013 databases as well as the LIVE In the wild image quality challenge database and show superior performance to state-of-the-art NR and FR IQA methods. Finally, cross-database evaluation shows a high ability to generalize between different databases, indicating a high robustness of the learned features
    • …
    corecore