502 research outputs found

    Adversarial Diversity and Hard Positive Generation

    Full text link
    State-of-the-art deep neural networks suffer from a fundamental problem - they misclassify adversarial examples formed by applying small perturbations to inputs. In this paper, we present a new psychometric perceptual adversarial similarity score (PASS) measure for quantifying adversarial images, introduce the notion of hard positive generation, and use a diverse set of adversarial perturbations - not just the closest ones - for data augmentation. We introduce a novel hot/cold approach for adversarial example generation, which provides multiple possible adversarial perturbations for every single image. The perturbations generated by our novel approach often correspond to semantically meaningful image structures, and allow greater flexibility to scale perturbation-amplitudes, which yields an increased diversity of adversarial images. We present adversarial images on several network topologies and datasets, including LeNet on the MNIST dataset, and GoogLeNet and ResidualNet on the ImageNet dataset. Finally, we demonstrate on LeNet and GoogLeNet that fine-tuning with a diverse set of hard positives improves the robustness of these networks compared to training with prior methods of generating adversarial images.Comment: Accepted to CVPR 2016 DeepVision Worksho

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods

    No-reference Stereoscopic Image Quality Assessment Using Natural Scene Statistics

    Get PDF
    We present two contributions in this work: (i) a bivariate generalized Gaussian distribution (BGGD) model for the joint distribution of luminance and disparity subband coefficients of natural stereoscopic scenes and (ii) a no-reference (NR) stereo image quality assessment algorithm based on the BGGD model. We first empirically show that a BGGD accurately models the joint distribution of luminance and disparity subband coefficients. We then show that the model parameters form good discriminatory features for NR quality assessment. Additionally, we rely on the previously established result that luminance and disparity subband coefficients of natural stereo scenes are correlated, and show that correlation also forms a good feature for NR quality assessment. These features are computed for both the left and right luminance-disparity pairs in the stereo image and consolidated into one feature vector per stereo pair. This feature set and the stereo pair׳s difference mean opinion score (DMOS) (labels) are used for supervised learning with a support vector machine (SVM). Support vector regression is used to estimate the perceptual quality of a test stereo image pair. The performance of the algorithm is evaluated over popular databases and shown to be competitive with the state-of-the-art no-reference quality assessment algorithms. Further, the strength of the proposed algorithm is demonstrated by its consistently good performance over both symmetric and asymmetric distortion types. Our algorithm is called Stereo QUality Evaluator (StereoQUE)
    corecore