1,505 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    A Development of a New Image Analysis Technique for Detecting the Flame Front Evolution in Spark Ignition Engine under Lean Condition

    Get PDF
    The aim of herein work is to develop an automatized algorithm for detecting, as objectively as possible, the flame front evolution of lean/ultra-lean mixtures ignited by low temperature plasma-based ignition systems. The low luminosity characterizing the latter conditions makes both kernel formation and combustion development difficult to detect accurately. Therefore, to estimate the igniter capability to efficiently ignite the mixture, ever more performing tools are required. The present work proposes a new image analysis technique, based on a dual-exposure fusion algorithm and on Convolutional Neural Networks (CNNs), to process low brightness images captured via high-speed camera on an optical engine. The performance of the proposed algorithm (PA) is compared to the one of a base reference (BR) algorithm used by the same research group for the imaging analysis. The comparison shows the capability of PA to quantify the flame radius of consecutive combustion cycles with lower dispersion if compared to BR and to correctly detect some events considered as misfires or anomalies by BR. Moreover, the proposed method shows greater capability to detect, in advance, the kernel formation with respect to BR, thus allowing a more detailed analysis of the performance of the igniters. A metric quantitative analysis is carried out, as well, to confirm the above-mentioned results. Therefore, PA results to be more suitable for analyzing ultra-lean combustions, heavily investigated to meet the increasingly stringent legislation on the internal combustion engines. Finally, the proposed algorithm allows us to automatically estimate the flame front evolution, regardless of the user’s interpretation of the phenomenon

    Advancing the understanding of pilot ignition in dual fuel engines : Experimental and conceptual studies

    Get PDF
    The energy transition is looking for new technologies to reduce CO2 emissions. One of the promising options is the dual fuel engine. In this concept, based on a diesel engine, a small pilot diesel injection is used to ignite a second fuel. This second fuel can be a low carbon or renewable high-octane fuel, that otherwise could not be applied in a diesel engine. Good results on emissions and efficiency are reported for this concept, but there is still room for improvement. This study worked on advancing the understanding of the dual fuel engineResearch on a dual fuel truck engine showed what could be achieved, and where limitations are seen. One of the limitations, cylinder to cylinder variation, was investigated. It could be explained making use of experiments and 1D simulations. The cause was found in exchange of injected fuel in the intake port, through the manifold. This resulted in enrichment of downstream cylinders, with fuel from the cylinders at the begin of the intake manifold. In a next stage, optical research was performed on a dual fuel marine engine. Here it was shown how the combustion could run in two different modes, Conventional Dual Fuel (CDF) and Reactivity Controlled Compression Ignition (RCCI). A fundamental difference in control mechanism was found between the two modes, where advancing the pilot results in earlier combustion in CDF mode, and in later combustion in RCCI mode. Initiated by a different pilot injection timing, a significant difference in dilution of the pilot fuel was seen in RCCI. This results in a more graduate heat release, which is known to create lower NOx emission. Since the optical campaign did not allow emission measurements, a second campaign was performed on a standard configuration. This indeed showed that with the RCCI combustion, created by a very early pilot timing, extremely low NOx emissions could be achieved. However, this reduction of polluting emissions came with an increase in the emission of uncombusted methane, which is a strong greenhouse gas. An optimum was found at late RCCI combustion, close to the transition to CDF, combining low emissions with a high efficiency. The position of the found optimum, and the limited availability of explanation of the operational differences between the combustion modes led to the creation of a conceptual model. It describes how the start of combustion is related to the pilot injection timing. It explains how in CDF mode the combustion can start after a short ignition delay, in which the liquid pilot fuel is diluted just enough to be ignitable. This gives an almost constant relation between the injection timing and the start of combustion. In RCCI mode the pilot fuel is injected much earlier, resulting in a much higher dilution. As a consequence, a higher temperature and pressure are required to start combustion. This explains why advancing the injection in this mode results in a later start of combustion and vice-versa. The higher dilution created by earlier injection requires ignition conditions that occur later in the engine cycle.All in all, the found optima and insights should help to run engines effectively in dual fuel mode. This allows the usage of renewable high-octane fuels in widely available diesel engines. In this way the transition towards sustainable transport can be strongly accelerated, without the need for high investments in electric infrastructure, depleting the world’s rare minerals and replacing the complete engine ecosystem

    Analysis of combustion concepts in a poppet valve two-stroke downsized compression ignition engine designed for passenger car applications

    Full text link
    [EN] The research work presented on this thesis has been performed in the framework of the development and optimization of the combustion system of a novel two-stroke CI engine, with a scavenging configuration through poppet-valves, which has been specifically designed for a light-duty vehicle application. The main objective of this investigation is to improve the existing understanding about two-stroke poppet-valves engines, and assess the main relationships between the gas exchange and combustion processes in this type of architecture, with the aim of evaluating their impact on the exhaust emissions formation processes and on final engine efficiency. Then, the performance of this two-stroke engine is going to be optimized while operating in conventional diesel mixing-controlled controlled combustion; and in a second step, two advanced premixed combustion concepts will be evaluated to identify their potential for decreasing NOx and soot emissions compared to CDC as well as its main technological limitations. The methodology proposed on this thesis combines both a theoretical and experimental approach, that allows maximizing the available information about the basic phenomena involved in the various processes under study, while also keeping an efficient optimization approach to reduce as much as possible the number of necessary experimental tests. Additionally, to analyze in detail the physical relationships between the local cylinder gas conditions (such as the oxygen concentration, the combustion temperature and the equivalence ratio) and the formation of exhaust emissions, particularly NOx and soot, it was necessary to develop and setup different theoretical tools to complement and support the experimentally measured trends. To achieve these objectives, the research work has been divided in two sequential stages: first, the conventional diesel combustion is studied and optimized, based on a proper combination of engine settings that have a strong influence over the characteristics of the mixing-controlled combustion; and in a second step, two advanced combustion concepts are implemented and analyzed, the highly-premixed combustion (HPC) of diesel and the partially premixed combustion (PPC) using a fuel with higher resistance to autoignition (in this case it has been used a RON95 gasoline). In this phase of the research, special emphasis has been made to the gasoline PPC concept, since this combustion mode showed the highest potential and most promising results during the initial implementation studies. Accordingly, the last stage of the research was mainly focused on the detailed study of the effect of different injection settings over the characteristics of the gasoline PPC concept. Finally, the main results obtained with the gasoline PPC concept have been compared against the optimized points found in CDC, in regards to the final exhaust emissions levels, specific fuel consumption and indicated efficiency.[ES] El trabajo de investigación presentado en esta tesis doctoral está enmarcado en el desarrollo y optimización del sistema de combustión de un novedoso motor de dos tiempos de encendido por compresión, que presenta una arquitectura de barrido por válvulas en culata, y que ha sido diseñado para aplicaciones de automoción dentro de la gama de coches compactos. El objetivo principal de esta investigación ha consistido en mejorar el conocimiento existente sobre los motores dos tiempos con arquitectura de barrido por válvulas, y a la vez identificar los principales vínculos entre los procesos de renovación de la carga y de combustión, con el fin de cuantificar su impacto sobre la formación de emisiones contaminantes y el rendimiento térmico del motor. Adicionalmente, se desea optimizar las prestaciones de este motor de dos tiempos operando con el proceso de combustión diésel convencional controlada por mezcla, así como evaluar el potencial de distintos conceptos avanzados de combustión de baja temperatura con fase de premezcla extendida, con el fin de reducir los niveles de emisiones contaminantes y mejorar el consumo específico de combustible del motor. La metodología utilizada en esta tesis ha sido concebida combinando un enfoque teórico-experimental, que permite maximizar la información que se puede obtener acerca de los fenómenos físicos involucrados en los diferentes procesos objeto de estudio, y a la vez conservar un enfoque de optimización eficiente reduciendo en la medida de lo posible el número de ensayos experimentales requeridos. Con la finalidad de analizar en detalle la relación que existe entre las condiciones en el cilindro (como lo es la concentración de oxígeno, la temperatura de combustión y el dosado local) y el proceso de formación de emisiones contaminantes, especialmente de NOx y hollín, se desarrollaron y utilizaron distintas herramientas teóricas para complementar y sustentar los comportamientos y tendencias observadas mediante los ensayos experimentales, tanto para el modo de combustión diésel convencional como para los conceptos avanzados de combustión. Para la consecución de dichos objetivos se ha seguido una estructura secuencial en la cual el trabajo de investigación ha sido desarrollado en dos grandes bloques: primero, se analizó y optimizó el proceso de combustión diésel convencional, mediante la combinación adecuada de parámetros de operación del motor que modifican apreciablemente las características del proceso de combustión controlada por mezcla; y segundo, se logró implementar y evaluar el desempeño de dos conceptos avanzados de combustión, específicamente el modo combustión altamente premezclado de tipo HPC utilizando diésel como combustible (acrónimo de "Highly-Premixed Combustion") y el modo de combustión parcialmente premezclada de tipo PPC ("Partially Premixed Combustion") utilizando un combustible con mayor resistencia a la auto-ignición (en este caso se utilizó gasolina de octanaje 95). En esta segunda fase, se hizo énfasis en el análisis del concepto de combustión PPC con gasolina, ya que este arrojó los resultados más prometedores durante la fase inicial de implementación. Consecuentemente, la última etapa de la investigación se centró en el estudio detallado del efecto de distintos parámetros de inyección sobre las características del proceso de combustión de tipo PPC. Finalmente, se ha comparado críticamente dicha operación en modo PPC con los resultados obtenidos operando con el modo de combustión diésel convencional, en cuanto al nivel final de emisiones contaminantes, al consumo de combustible y rendimiento indicado y al desempeño general del motor.[CA] El treball d'investigació presentat en esta tesi està emmarcat en el desenvolupament i optimització del sistema de combustió d'un nou motor dos temps d'encesa per compressió, amb configuració d'escombratge per vàlvules, i que ha estat dissenyat per a aplicacions d'automoció dins de la gamma de cotxes compactes. L'objectiu principal d'esta investigació ha consistit a millorar el coneixement existent sobre els motors dos temps amb configuració d'escombratge per vàlvules, així com també identificar els principals vincles entre els processos de renovació de la càrrega i de combustió, a fi de quantificar el seu impacte sobre la formació d'emissions contaminants i el rendiment tèrmic del motor. Addicionalment, es desitja optimitzar les prestacions d'este nou motor operant amb el mode convencional de combustió dièsel per difusió, així com avaluar el potencial de noves maneres de combustió de baixa temperatura amb fase de premescla extesa, per a controlar el nivell d'emissions i el consum de combustible. La metodologia utilitzada en esta tesi s'ha plantejat des d'un punt de vista teóric experimental, que permet maximitzar la informació que es pot obtindre sobre els fenòmens basics involucrats en els diferents processos objecte d'estudi, i al mateix temps conservar un enfocament d'optimització eficient reduïnt en la mesura del possible el nombre d'proves experimentals requerit. Amb la finalitat d'analitzar en detall la relació que existeix entre les condicions en el cilindre (com ho és la concentració d'oxigen, la temperatura de combustió i el dosatge local) i el procés de formació d'emissions contaminants, especialment de NOx i sutge, es van desenvolupar i van utilitzar distintes eines teòriques per a complementar i sustentar els comportaments i tendències observades per mitjà dels assajos experimentals, tant per al mode de combustió dièsel convencional com per als conceptes avançats de combustió. Per a abordar eixe objectiu, s'ha seguit una estructura seqüencial, en la qual el treball d'investigació s'ha desenvolupat en en dos grans blocs: en primer lloc, es va analitzar i va optimitzar el procés de combustió dièsel convencional, per mitjà de la combinació adequada de paràmetres d'operació del motor que modifiquen apreciablement les característiques del procés de combustió controlada per difusió; i en segon lloc, es va aconseguir implementar i avaluar les prestacions de dos conceptes avançats de combustió de baixa temperatura premesclats, específicament el mode combustió altament premesclat HPC (acrònim de "Highly-Premixed Combustion") utilitzant dièsel com a combustible i el mode de combustió parcialment premesclat PPC ("Partially Premixed Combustion") utilitzant un combustible amb major resistència a l'autoignició (en aquest cas s'ha utilitzat gasolina d'octanatge 95). En esta segona etapa, es va fer èmfasi en l'anàlisi del concepte de combustió PPC amb gasolina, ja que aquest va presentar els resultats més prometedors durant la fase inicial d'implementació. Conseqüentment, l'última etapa de la investigació es va centrar en l'estudi detallat de l'efecte de distints paràmetres d'injecció sobre les característiques del mode de combustió PPC. Finalment, s'ha comparat críticament la dita operació en mode PPC amb els resultats obtinguts operant amb el mode de combustió dièsel convencional, quant al nivell final d'emissions contaminants, al consum de combustible i rendiment indicat, i a les prestacions generals del motor.De Lima Moradell, DA. (2016). Analysis of combustion concepts in a poppet valve two-stroke downsized compression ignition engine designed for passenger car applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68502TESI

    Evaluation of combustion concepts and scavenging configurations in a 2-Stroke compression-ignition engine for future automotive powerplants

    Full text link
    [ES] El trabajo de investigación presentado en esta tesis es el resultado de varios años dedicados al desarrollo, la implementación y la optimización de dos tecnologías combinadas: un concepto de combustión innovador y una arquitectura de motor de nuevo diseño. Esta investigacion se ha realizado en el marco de una colaboración con Renault SA, como continuación de las actividades realizadas en el proyecto europeo POWERFUL (POWERtrain for FUture Light-duty vehicles) por un lado,y en el marco del proyecto europeo REWARD (Real World Advanced technologies foR Diesel engines), devenido como continuación del proyecto POWERFUL en el marco del programa de investigación Horizonte 2020, por otro lado. Los principales objetivos de estos estudios eran evaluar el potencial del concepto de combustión parcialmente premezclada (PPC) operando con gasolina como combustible en un innovador motor de 2 tiempos de válvulas en culata, y luego diseñar una nueva geometría de motor de 2 tiempos utilizando la arquitectura Uniflujo para superar los principales problemas y limitaciones observados durante la primera etapa, que se pueden resumir principalmente en el rendimiento de barrido (especialmente trabajando en cargas elevadas). La metodología diseñada para este trabajo de investigación sigue un enfoque teórico-experimental. La evaluación del concepto de combustión PPC operando con gasolina se llevó a cabo principalmente con un enfoque experimental con el apoyo del análisis en línea directamente en el banco de ensayo, seguido de un exhaustivo tratamiento posterior de los datos y de un análisis detallado del proceso de combustión utilizando herramientas de diagnóstico. Por el contrario, el desarrollo del nuevo motor Uniflujo de 2 tiempos consistió principalmente en iteraciones sobre modelado 3D-CFD, si bien las actividades experimentales fueron fundamentales para validar las diferentes soluciones propuestas y evaluar su sensibilidad ante diferentes parámetros de interés utilizando una metodología de Diseño de Experimentos (DoE). La primera parte del trabajo se ha dedicado a la comprensión de los procesos termodinámicos involucrados en la combustión operando con el concepto PPC en un motor de 2 tiempos de válvulas en culata utilizando gasolina como combustible, y a evaluar su potencial en términos de emisiones contaminantes, consumo de combustible y ruido. Por último, se ha realizado un trabajo de exploración para ampliar en la medida de lo posible el rango de funcionamiento de este concepto de combustión en esta configuración específica del motor, investigando especialmente el rendimiento en cargas bajas en todo el rango de regímenes de giro del motor, y estableciendo también las principales limitaciones para la operación en cargas altas. La segunda parte de la tesis se ha centrado en el desarrollo y optimización teórica de un motor Uniflujo de 2 tiempos de nuevo diseño, incluyendo su fabricación y validación experimental. El objetivo principal era optimizar, utilizando principalmente simulaciones 3D-CFD, el rendimiento de barrido de esta arquitectura de 2 tiempos mediante el diseño de nuevas geometrías de puertos de admisión, permitiendo un gran control sobre el flujo de aire hacia y a través del cilindro para barrer al máximo los gases quemados y minimizar el cortocircuito de aire fresco hacia el escape. Las soluciones óptimas se evaluaron experimentalmente siguiendo la metodología DoE, antes de comparar finalmente los resultados de rendimiento de barrido con la anterior arquitectura de motor de 2 tiempos con válvulas en culata.[CA] El treball de recerca presentat en aquesta tesi és el resultat de diversos anys dedicats al desenvolupament, la implementació i l'optimització de dues tecnologies combinades: un concepte de combustió innovador i una arquitectura de motor de nou disseny. Aquesta recerca s'ha realitzat en el marc d'una col·laboració amb Renault SA, com a continuació de les activitats del projecte europeu *POWERFUL (*POWERtrain *for *FUture Light-*duty *vehicles) d'una banda, i en el marc del projecte europeu *REWARD (Real *World *Advanced *technologies *foR Dièsel *engines), es devingut com a continuació del projecte *POWERFUL en el marc del programa d'investigació Horitzó 2020, d'altra banda. Els principals objectius d'aquests estudis eren avaluar el potencial del concepte de combustió parcialment premesclada (PPC) operant amb gasolina com a combustible en un innovador motor de 2 temps de vàlvules en culata, i després dissenyar una nova geometria de motor de 2 temps utilitzant l'arquitectura Uniflux per a superar els principals problemes i limitacions observats durant la primera etapa, que es poden resumir principalment en el rendiment d'escombratge (especialment treballant en càrregues elevades). La metodologia dissenyada per a realitzar aquests treballs de recerca segueix un enfocament tant experimental com teòric. L'avaluació del concepte de combustió PPC operant amb gasolina es va dur a terme principalment amb un enfocament experimental, però sempre amb el suport de l'anàlisi en línia directament en el banc d'assaig, seguit d'un exhaustiu tractament posterior de les dades combinat amb una anàlisi detallada del procés de combustió utilitzant eines de diagnòstic. Per contra, el desenvolupament i el disseny del nou motor Uniflux de 2 temps va consistir principalment en iteracions sobre modelatge 3D-CFD, si bé les activitats experimentals van ser fonamentals per a validar les diferents solucions proposades i avaluar la seua sensibilitat davant una sèrie de paràmetres d'interés utilitzant una metodologia de Disseny d'Experiments (DoE). La primera part del treball s'ha dedicat a la comprensió dels processos termodinàmics involucrats en la combustió operant amb el concepte de combustió PPC en un motor de 2 temps de vàlvules en culata utilitzant gasolina com a combustible, i a avaluar el seu potencial en termes d'emissions contaminants, consum de combustible i també de soroll. Finalment, s'ha fet un treball d'exploració per a ampliar en la mesura que siga possible el rang de funcionament d'aquest concepte de combustió utilitzant eixa configuració específica del motor, investigant especialment el rendiment en càrregues baixes en tot el rang de règims de gir del motor, i establint també les principals limitacions per a l'operació en càrregues altes. La segona part de la tesi s'ha centrat en el desenvolupament i optimització teòrica d'un motor Uniflux de 2 temps de nou disseny, incloent la seua fabricació i validació experimental. L'objectiu principal era optimitzar, utilitzant principalment simulacions 3D-CFD, el rendiment d'escombratge d'aquesta arquitectura de 2 temps mitjançant el disseny de noves geometries de ports d'admissió, permetent un gran control sobre el flux d'aire cap a i a través del cilindre per a escombrar al màxim els gasos cremats i minimitzar el curtcircuit d'aire fresc cap a l'escapament. Les solucions òptimes es van fabricar i van avaluar experimentalment seguint la metodologia DoE, abans de comparar finalment els resultats de rendiment d'escombratge amb l'anterior arquitectura de motor de 2 temps amb vàlvules en culata.[EN] The research work presented in this thesis is the result of several years dedicated to the development, implementation and optimization of two combined technologies: an innovative combustion concept and a newly designed engine architecture. These investigations have been performed in the framework of a research collaboration with Renault SA following up the activities performed along the European POWERFUL project (POWERtrain for FUture Light-duty vehicles) on the one hand, and in the framework of the European REWARD project (REal World Advanced technologies foR Diesel engines), brought as a continuation of the POWERFUL project in the frame of the Horizon 2020 research program, on the other hand. The main objectives of these studies were to evaluate the potential of the Partially Premixed Combustion (PPC) concept operating with gasoline fuel in an innovative 2-Stroke poppet-valve engine, and then to design a new 2-Stroke engine geometry using the Uniflow architecture to overcome the main problems and limitations observed during the first stage, which can be mainly summarized to the scavenging performance (especially at high loads). The methodology designed for performing these investigation is based on both experimental and theoretical approaches. The evaluation of the gasoline PPC concept was carried out mainly experimentally, but always supported by online analysis directly on the test-bench and followed by a thorough post-processing of the data combined with a detailed analysis of the combustion using combustion diagnostic tools. On the contrary, the development and design of the new 2-Stroke Uniflow engine consisted mainly of 3D-CFD iterations, but experimental testing was crucial to validate the different solutions proposed and evaluate their sensitivity to a set of parameters of interest using a Design of Experiments (DoE) methodology. The first part of the work has been dedicated to the understanding of the thermodynamical processes involved in the combustion in a poppet-valve 2-Stroke engine operating with the gasoline PPC concept, and to evaluate its potential in terms of pollutant emissions, fuel consumption and also noise. Finally, a wide exploration has been performed to extend as much as possible the operating range of this combustion concept using that specific engine configuration, especially investigating the low loads performance throughout the full range of engine speeds, and also laying out the main limitations for high-to-full load operations. The second part of the thesis has been focused on the development and theoretical optimization of a newly designed 2-Stroke Uniflow engine, leading to manufacture and experimental validation. The main objective was to optimize, using mainly 3D-CFD modeling simulations, the scavenging performance of this 2-Stroke architecture by designing new intake ports geometries and to enable a great control over the air flow into and through the cylinder in order to scavenge the burnt gases as much as possible while minimizing the fresh air short-circuit to the exhaust. The optimum solutions were then manufactured and experimentally tested following a DoE methodology, before finally comparing the results of the scavenging performance to the previous 2-Stroke poppet-valve engine architecture.Thein, KJL. (2021). Evaluation of combustion concepts and scavenging configurations in a 2-Stroke compression-ignition engine for future automotive powerplants [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/164044TESI

    Optimization and analysis by CFD of mixing-controlled combustion concepts in compression ignition engines

    Full text link
    El trabajo presentado en esta Tesis está motivado por la necesidad de los motores de combustión interna alternativos de reducir el consumo de combustible y las emisiones de CO2 mientras se satisfacen las cada vez más restrictivas regulaciones de emisiones contaminantes. Por lo tanto, el objetivo principal de este estudio es optimizar un sistema de combustión de encendido por compresión controlado por mezcla para probar su potencial como motores de futura generación. Con esta meta se ha desarrollado un sistema automático que combina CFD con métodos de optimización avanzados para analizar y entender las configuraciones óptimas. Los resultados presentados en este trabajo se dividen en dos bloques principales. El primero corresponde a la optimización de un sistema de encendido por compresión convencional alimentado con diésel. El segundo se centra en un concepto de combustión avanzado donde se ha sustituido el fuel por Dimetil-eter. En ambos casos, el estudio no sólo halla una configuración óptima sino que también se describen las relaciones causa/efecto entre los parámetros más relevantes del sistema de combustión. El primer bloque aplica métodos de optimización no-evolutivos a un motor medium-duty alimentado por diésel tratando de minimizar consumo a la vez que se mantienen las emisiones contaminantes por debajo de los estándares de emisiones contaminantes impuestos. Una primera parte se centra en la optimización de la geometría de la cámara de combustión y el inyector. Seguidamente se extiende el estudio añadiendo los settings de renovación de la carga de y de inyección al estudio, ampliando el potencial de la optimización. El estudio demuestra el limitado potencial de mejora de consumo que tiene el motor de referencia al mantener los niveles de emisiones contaminantes. Esto demuestra la importancia de incluir parámetros de renovación de la carga e inyección al proceso de optimización. El segundo bloque aplica una metodología basada en algoritmos genéticos al diseño del sistema de combustión de un motor heavy-duty alimentado con Dimetileter. El estudio tiene dos objetivos, primero la optimización de un sistema de combustión convencional controlado por mezcla con el objetivo de lograr mejorar el consumo y reducir las emisiones contaminantes hasta niveles inferiores a los estándares US2010. Segundo la optimización de un sistema de combustión trabajando en condiciones estequiométricas acoplado con un catalizador de tres vías buscando reducir consumo y controlar las emisiones contaminantes por debajo de los estándares 2030. Ambas optimizaciones incluyen tanto la geometría como los parámetros más relevantes de renovación de la carga y de inyección. Los resultados presentan un sistema de combustión convencional óptimo con una notable mejora en rendimiento y un sistema de combustión estequiométrica que es capaz de ofrecer niveles de NOx menores al 1% de los niveles de referencia manteniendo niveles competitivos de rendimiento. Los resultados presentados en esta Tesis ofrecen una visión extendida de las ventajas y limitaciones de los motores MCCI y el camino a seguir para reducir las emisiones de futuros sistemas de combustión por debajo de los estándares establecidos. A su vez, este trabajo también demuestra el gran potencial que tiene el Dimetil-eter como combustible para futuras generaciones de motores.The work presented in this Thesis was motivated by the needs of internal combustion engines (ICE) to decrease fuel consumption and CO2 emissions, while fulfilling the increasingly stringent pollutant emission regulations. Then, the main objective of this study is to optimize a mixing-controlled compression ignition (MCCI) combustion system to show its potential for future generation engines. For this purpose an automatic system based on CFD coupled with different optimization methods capable of optimizing a complete combustion system with a reasonable time cost was designed together with the methodology to analyze and understand the new optimum systems. The results presented in this work can be divided in two main blocks, firstly an optimization of a conventional diesel combustion system and then an optimization of a MCCI system using an alternative fuel with improved characteristics compared to diesel. Due to the methodologies used in this Thesis, not only the optimum combustion system configurations are described, but also the cause/effect relations between the most relevant inputs and outputs are identified and analyzed. The first optimization block applies non-evolutionary optimization methods in two sequential studies to optimize a medium-duty engine, minimizing the fuel consumption while fulfilling the emission limits in terms of NOx and soot. The first study targeted four optimization parameters related to the engine hardware including piston bowl geometry, injector nozzle configuration and mean swirl number. After the analysis of the results, the second study extended to six parameters, limiting the optimization of the engine hardware to the bowl geometry, but including the key air management and injection settings. The results confirmed the limited benefits, in terms of fuel consumption, with constant NOx emission achieved when optimizing the engine hardware, while keeping air management and injection settings. Thus, including air management and injection settings in the optimization is mandatory to significantly decrease the fuel consumption while keeping the emission limits. The second optimization block applies a genetic algorithm optimization methodology to the design of the combustion system of a heavy-duty Diesel engine fueled with dimethyl ether (DME). The study has two objectives, the optimization of a conventional mixing-controlled combustion system aiming to achieve US2010 targets and the optimization of a stoichiometric mixing-controlled combustion system coupled with a three way catalyst to further control NOx emissions and achieve US2030 emission standards. These optimizations include the key combustion system related hardware, bowl geometry and injection nozzle design as input factors, together with the most relevant air management and injection settings. The target of the optimizations is to improve net indicated efficiency while keeping NOx emissions, peak pressure and pressure rise rate under their corresponding target levels. Compared to the baseline engine fueled with DME, the results of the study provide an optimum conventional combustion system with a noticeable NIE improvement and an optimum stoichiometric combustion system that offers a limited NIE improvement keeping tailpipe NOx values below 1% of the original levels. The results presented in this Thesis provide an extended view of the advantages and limitations of MCCI engines and the optimization path required to achieve future emission standards with these engines. Additionally, this work showed how DME is a promising fuel for future generation engines since it is able to achieve future emission standards while maintaining diesel-like efficiencyEl treball presentat en esta Tesi està motivat per la necessitat dels motors de combustió interna alternatius de reduir el consum de combustible i les emissions de CO2 mentres se satisfan les cada vegada mes restrictives regulacions d'emissions contaminants. Per tant, l'objectiu principal d'este estudi es optimitzar un sistema de combustió d'encesa per compressió controlat per mescla per a provar el seu potencial com a motors de futura generació. Amb esta meta s'ha desenrotllat un sistema automàtic que combina CFD amb mètodes d'optimització avançats per a analitzar i entendre les configuracions òptimes. Els resultats presentats en este treball es dividixen en dos blocs principals. El primer correspon a l'optimització d'un sistema d'encesa per compressió convencional alimentat amb dièsel. El segon se centra en un concepte de combustió avançat on s'ha substituït el fuel per Dimetil-eter. En ambdós casos, l'estudi no sols troba una configuració òptima sinó que també es descriuen les relacions causa/efecte entre els paràmetres més rellevants del sistema de combustió. El primer bloc aplica mètodes d'optimització no-evolutius a un motor mediumduty alimentat per dièsel tractant de minimitzar consum al mateix temps que es mantenen les emissions contaminants per davall dels estàndards d'emissions contaminants impostos. Una primera part se centra en l'optimització de la geometria de la cambra de combustió i l'injector. A continuació s'estén l'estudi afegint els settings de renovació de la càrrega de i d'injecció a l'estudi, ampliant el potencial de l'optimització. L'estudi demostra el limitat potencial de millora de consum que té el motor de referència al mantindre els nivells d'emissions contaminants. Açò demostra la importància d'incloure paràmetres de renovació de la càrrega i injecció al procés d'optimització. El segon bloc aplica una metodologia basada en algoritmes genètics al disseny del sistema de combustió d'un motor heavy-duty alimentat amb Dimetil-eter. L'estudi té dos objectius, primer l'optimització d'un sistema de combustió convencional controlat per mescla amb l'objectiu d'aconseguir millorar el consum i reduir les emissions contaminants fins nivells inferiors als estàndards US2010. Segon l'optimització d'un sistema de combustió treballant en condicions estequiomètriques acoblat amb un catalitzador de tres vies buscant reduir consum i controlar les emissions contaminants per davall dels estàndards 2030. Ambdós optimitzacions inclouen tant la geometria com els paràmetres més rellevants de renovació de la càrrega i d'injecció. Els resultats presenten un sistema de combustió convencional òptim amb una notable millora en rendiment i un sistema de combustió estequiomètrica que és capaç d'oferir nivells de NOx menors al 1% dels nivells de referència mantenint nivells competitius de rendiment. Els resultats presentats en esta Tesi oferixen una visió estesa dels avantatges i limitacions dels motors MCCI i el camï que s'ha de seguir per a reduir les emissions de futurs sistemes de combustió per davall dels estàndards establits. Al seu torn, este treball també demostra el gran potencial que té el Dimetil-eter com a combustible per a futures generacions de motors.Hernández López, A. (2018). Optimization and analysis by CFD of mixing-controlled combustion concepts in compression ignition engines [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/103826TESI

    Investigation of Combustion Characteristics of a Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition Operation

    Get PDF
    The conversion of existing diesel engines to natural-gas spark ignition operation by adding a gas injector in the intake manifold for fuel delivery and replacing the diesel fuel injector with a spark plug to initiate and control the combustion process can reduce U.S. dependence on petroleum imports and curtail engine-out emissions. As the conventional diesel combustion chamber (i.e., flat head and bowl-in-piston) creates high turbulence, the engine can operate leaner, which would increase its efficiency and reduce emissions. However, natural gas combustion in such retrofitted engines presents differences compared to that in conventional spark ignited engines. Subsequently, the main goal of this study was to investigate the characteristics of natural gas combustion inside a diesel-like, fast-burn combustion chamber using a unique array of experimental and numerical tools. The experimental platform consisted of a heavy-duty single-cylinder diesel engine converted to natural-gas spark ignition and operated at a low-speed, lean equivalence ratio, and medium-load condition. The engine can also operate in an optical configuration (i.e., the stock piston and cylinder block can be replaced with a see-through piston and an extended cylinder block), which was used to visualize flame behavior. The optical data indicated a thick and fast-propagated flame in the piston bowl but slower flame propagation inside the squish region. In addition, a 3D numerical model of the optical engine was built to better explain the geometry effects. The simulation results suggested that while the region around the spark plug location experienced a moderate turbulence that helped with the ignition process, the interaction of squish, piston motion, and intake swirl created a highly-turbulent environment that favored the fast burn inside the bowl and stabilized the combustion process. However, the squish region experienced a much lower turbulence, which, combined with the reduced temperature and pressure during the expansion stroke and its higher surface-to-volume ratio, reduced the burning velocity and the flame propagation, but also avoided knocking. Consequently, the bowl-in-piston geometry separated the lean-burn natural gas combustion into two distinct events. To extend the optical findings, the metal engine configuration was used to investigate the effects of gas composition, spark timing, equivalence ratio, and engine speed on the two-stage combustion. The results suggested that operating conditions controlled the magnitude and phasing of the two combustion events. Moreover, 3D CFD simulations of the metal engine configuration showed that the squish region contained an important mixture fraction that would burn much slower and can increase the phasing separation between the two combustion events to a point that a second peak would appear in the heat release rate. Moreover, the rapid-burn event in such an engine was much shorter compared to its traditional definition (i.e., the time in crank angle degrees between the 10% and 90% energy-release fractions). A better solution was to use the inflection points in the apparent heat release to locate the fast burning stage. Specifically, the second inflection point of heat release rate can be regarded as the end of the fast inside-the-bowl burning. Furthermore, the operating conditions controlled the fuel fraction that burned in the squish region before the fuel inside the bowl completely burned, hence the phasing of the late combustion stage. This suggests that squish added to the combustion complexities of such retrofitted engines and that the combustion strategy should optimize the mass of fuel that burns inside the squish region. In addition, the results indicated that the coefficient of variation and standard deviation of peak cylinder pressure are better metrics to evaluate the cycle-to-cycle variations than variations in the indicated mean effective pressure because they were less affected by the combustion event inside the squish region. Overall, the reliable ignition, stable combustion, and the lack of knocking in this 13.3 compression-ratio diesel chamber showed promise for heavy-duty compression ignition engines converted to spark ignition natural gas operation under lean conditions, which would accelerate the introduction of heavy-duty natural gas vehicles in the U.S.A

    Laser induced plasma methodology for ignition control in direct injection sprays

    Full text link
    New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion with that of a conventional auto-ignited Diesel spray.The authors acknowledge that this research work has been partly funded by the Government of Spain under the project HiReCo TRA2014-58870-R and grant BES-2015-072119. The equipment used in this work has been partially supported by FEDER project ICTS-2012-06, framed in the operational program of unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain.Pastor Soriano, JV.; García Oliver, JM.; García Martínez, A.; Pinotti, M. (2016). Laser induced plasma methodology for ignition control in direct injection sprays. Energy Conversion and Management. 120:144-156. https://doi.org/10.1016/j.enconman.2016.04.086S14415612

    Combustion Visualization And Particulate Matter Emission Of A Gdi Engine By Using Gasoline And E85

    Get PDF
    In order to increase engine efficiency as well as to reduce emission, optimizing combustion is always the challenge in research and product development. Gasoline direct injection (GDI) engines have been popularized due to its higher power density, fuel efficiency, and the possibility for advanced engine technologies over conventional port-fuel-injection (PFI) gasoline engines. However, many issues are heavily investigated, such as air-fuel mixing preparation, fuel wall-wetting, higher HC and PM emissions, catalytic convertor efficiency, knocking, and pre-ignition. Besides, advanced technologies represent higher production cost. Because of the limited resource of petroleum-based fuels, ethanol is deemed as the alternative fuel for gasoline due to its availability, renewability, and fuel properties. It is also known for its lower energy content (LHV ~ 27 MJ/kg) that the fuel economy would decrease if such a fuel is used. Besides that, lower HC, CO, NOX, and PM emissions may be achieved with the presence of ethanol in fuel. The present study is focused on visualizing GDI combustion with different fuels (E0 and E85) along with engine-out emission measurement specially focusing on PM emission. Different engine operation conditions are taken into consideration to study the effects on engine performance in terms of engine start-up, combustion quality and variation, and engine-out emission. High speed imaging techniques are used for visualizing the combustion process, and high speed emission measurement devices are used for engine-out emission study. PM emission is the primary focus in the current study on emissions with the assistance of in-cylinder visualization to identify the location of diffusion flame where the soot is formed. CFD modeling is also implemented to analyze the air-fuel mixture preparation as well as the combustion process. The results indicate that the combustion process may not be ideal under certain operating conditions. By various image processing techniques, it is found that the flame kernel development could be either too slow or too heterogeneous. Fuel wall impingement is also found that pool fire is in inevitable in some cases that HC, CO, and PM emissions are high. Injection timing, ignition timing, and air-fuel ratio are the three primary factors that need to be carefully controlled for engine calibration in order to achieve higher efficiency and lower emissions. Some advanced technologies, e.g. one-valve deactivation, may not be ideal at certain speed and load. The use of alternative fuel could reduce PM emission in mass, but the particle number could sometimes be higher than using E0. The CFD simulation also validates the similar results found from the experiments
    corecore