46,810 research outputs found

    Multiscale Astronomical Image Processing Based on Nonlinear Partial Differential Equations

    Get PDF
    Astronomical applications of recent advances in the field of nonastronomical image processing are presented. These innovative methods, applied to multiscale astronomical images, increase signal-to-noise ratio, do not smear point sources or extended diffuse structures, and are thus a highly useful preliminary step for detection of different features including point sources, smoothing of clumpy data, and removal of contaminants from background maps. We show how the new methods, combined with other algorithms of image processing, unveil fine diffuse structures while at the same time enhance detection of localized objects, thus facilitating interactive morphology studies and paving the way for the automated recognition and classification of different features. We have also developed a new application framework for astronomical image processing that implements some recent advances made in computer vision and modern image processing, along with original algorithms based on nonlinear partial differential equations. The framework enables the user to easily set up and customize an image-processing pipeline interactively; it has various common and new visualization features and provides access to many astronomy data archives. Altogether, the results presented here demonstrate the first implementation of a novel synergistic approach based on integration of image processing, image visualization, and image quality assessment

    General Adaptive Neighborhood Image Processing for Biomedical Applications

    Get PDF
    In biomedical imaging, the image processing techniques using spatially invariant transformations, with fixed operational windows, give efficient and compact computing structures, with the conventional separation between data and operations. Nevertheless, these operators have several strong drawbacks, such as removing significant details, changing some meaningful parts of large objects, and creating artificial patterns. This kind of approaches is generally not sufficiently relevant for helping the biomedical professionals to perform accurate diagnosis and therapy by using image processing techniques. Alternative approaches addressing context-dependent processing have been proposed with the introduction of spatially-adaptive operators (Bouannaya and Schonfeld, 2008; Ciuc et al., 2000; Gordon and Rangayyan, 1984;Maragos and Vachier, 2009; Roerdink, 2009; Salembier, 1992), where the adaptive concept results from the spatial adjustment of the sliding operational window. A spatially-adaptive image processing approach implies that operators will no longer be spatially invariant, but must vary over the whole image with adaptive windows, taking locally into account the image context by involving the geometrical, morphological or radiometric aspects. Nevertheless, most of the adaptive approaches require a priori or extrinsic informations on the image for efficient processing and analysis. An original approach, called General Adaptive Neighborhood Image Processing (GANIP), has been introduced and applied in the past few years by Debayle & Pinoli (2006a;b); Pinoli and Debayle (2007). This approach allows the building of multiscale and spatially adaptive image processing transforms using context-dependent intrinsic operational windows. With the help of a specified analyzing criterion (such as luminance, contrast, ...) and of the General Linear Image Processing (GLIP) (Oppenheim, 1967; Pinoli, 1997a), such transforms perform a more significant spatial and radiometric analysis. Indeed, they take intrinsically into account the local radiometric, morphological or geometrical characteristics of an image, and are consistent with the physical (transmitted or reflected light or electromagnetic radiation) and/or physiological (human visual perception) settings underlying the image formation processes. The proposed GAN-based transforms are very useful and outperforms several classical or modern techniques (Gonzalez and Woods, 2008) - such as linear spatial transforms, frequency noise filtering, anisotropic diffusion, thresholding, region-based transforms - used for image filtering and segmentation (Debayle and Pinoli, 2006b; 2009a; Pinoli and Debayle, 2007). This book chapter aims to first expose the fundamentals of the GANIP approach (Section 2) by introducing the GLIP frameworks, the General Adaptive Neighborhood (GAN) sets and two kinds of GAN-based image transforms: the GAN morphological filters and the GAN Choquet filters. Thereafter in Section 3, several GANIP processes are illustrated in the fields of image restoration, image enhancement and image segmentation on practical biomedical application examples. Finally, Section 4 gives some conclusions and prospects of the proposed GANIP approach

    Multiscale Discriminant Saliency for Visual Attention

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between center and surround classes. Discriminant power of features for the classification is measured as mutual information between features and two classes distribution. The estimated discrepancy of two feature classes very much depends on considered scale levels; then, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden markov tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, saliency value for each dyadic square at each scale level is computed with discriminant power principle and the MAP. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multiscale discriminant saliency method (MDIS) against the well-know information-based saliency method AIM on its Bruce Database wity eye-tracking data. Simulation results are presented and analyzed to verify the validity of MDIS as well as point out its disadvantages for further research direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio

    Coronal Mass Ejection Detection using Wavelets, Curvelets and Ridgelets: Applications for Space Weather Monitoring

    Full text link
    Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic feld that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and supressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications.Comment: Accepted for publication in Advances in Space Research (3 April 2010

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy
    • …
    corecore