4 research outputs found

    Solar activity detection and prediction using image processing and machine learning techniques

    Get PDF
    The objective of the research in this dissertation is to develop the methods for automatic detection and prediction of solar activities, including prominence eruptions, emerging flux regions and solar flares. Image processing and machine learning techniques are applied in this study. These methods can be used for automatic observation of solar activities and prediction of space weather that may have great influence on the near earth environment. The research presented in this dissertation covers the following topics: i) automatic detection of prominence eruptions (PBs), ii) automatic detection of emerging flux regions (EFRs), and iii) automatic prediction of solar flares. In detection of prominence eruptions, an automated method is developed by combining image processing and pattern recognition techniques. Consecutive Hu solar images are used as the input. The image processing techniques, including image transformation, segmentation and morphological operations are used to extract the limb objects and measure the associated properties. The pattern recognition techniques, such as Support Vector Machine (SVM), are applied to classify all the objects and generate a list of identified the PBs as the output. In detection of emerging flux regions, an automatic detection method is developed by using multi-scale circular harmonic filters, Kalman filter and SVM. The method takes a sequence of consecutive Michelson Doppler Imager (MDI) magnetograms as the input. The multi-scale circular harmonic filters are applied to detect bipolar regions from the solar disk surface and these regions are traced by Kalman filter until their disappearance. Finally, a SVM classifier is applied to distinguish EFRs from the other regions based on statistical properties. In solar flare prediction, it is modeled as a conditional density estimation (CDE) problem. A novel method is proposed to solve the CDE problem using kernel-based nonlinear regression and moment-based density function reconstruction techniques. This method involves two main steps. In the first step, kernel-based nonlinear regression techniques are applied to predict the conditional moments of the target variable, such as flare peak intensity or flare index. In the second step, the condition density function is reconstructed based on the estimated moments. The method is compared with the traditional double-kernel density estimator, and the experimental results show that it yields the comparable performance of the double-kernel density estimator. The most important merit of this new method is that it can handle high dimensional data effectively, while the double-kernel density estimator has confined to the bivariate case due to the difficulty of determining optimal bandwidths. The method can be used to predict the conditional density function of either flare peak intensity or flare index, which shows that our method is of practical significance in automated flare forecasting

    Fast generic polar harmonic transforms

    Get PDF
    International audienceGeneric polar harmonic transforms have recently been proposed to extract rotation-invariant features from images and their usefulness has been demonstrated in a number of pattern recognition problems. However, direct computation of these transforms from their definition is inefficient and is usually slower than some efficient computation strategies that have been proposed for other methods. This paper presents a number of novel computation strategies to compute these transforms rapidly. The proposed methods are based on the inherent recurrence relations among complex exponential and trigonometric functions used in the definition of the radial and angular kernels of these transforms. The employment of these relations leads to recursive and addition chain-based strategies for fast computation of harmonic function-based kernels. Experimental results show that the proposed method is about 10× faster than direct computation and 5× faster than fast computation of Zernike moments using the q-recursive strategy. Thus, among all existing rotation-invariant feature extraction methods, polar harmonic transforms are the fastest

    Generic polar harmonic transforms for invariant image representation

    Get PDF
    International audienceThis paper introduces four classes of rotation-invariant orthogonal moments by generalizing four existing moments that use harmonic functions in their radial kernels. Members of these classes share beneficial properties for image representation and pattern recognition like orthogonality and rotation-invariance. The kernel sets of these generic harmonic function-based moments are complete in the Hilbert space of square-integrable continuous complex-valued functions. Due to their resemble definition, the computation of these kernels maintains the simplicity and numerical stability of existing harmonic function-based moments. In addition, each member of one of these classes has distinctive properties that depend on the value of a parameter, making it more suitable for some particular applications. Comparison with existing orthogonal moments defined based on Jacobi polynomials and eigenfunctions has been carried out and experimental results show the effectiveness of these classes of moments in terms of representation capability and discrimination power

    Image Quality Assessment: Addressing the Data Shortage and Multi-Stage Distortion Challenges

    Get PDF
    Visual content constitutes the vast majority of the ever increasing global Internet traffic, thus highlighting the central role that it plays in our daily lives. The perceived quality of such content can be degraded due to a number of distortions that it may undergo during the processes of acquisition, storage, transmission under bandwidth constraints, and display. Since the subjective evaluation of such large volumes of visual content is impossible, the development of perceptually well-aligned and practically applicable objective image quality assessment (IQA) methods has taken on crucial importance to ensure the delivery of an adequate quality of experience to the end user. Substantial strides have been made in the last two decades in designing perceptual quality methods and three major paradigms are now well-established in IQA research, these being Full-Reference (FR), Reduced-Reference (RR), and No-Reference (NR), which require complete, partial, and no access to the pristine reference content, respectively. Notwithstanding the progress made so far, significant challenges are restricting the development of practically applicable IQA methods. In this dissertation we aim to address two major challenges: 1) The data shortage challenge, and 2) The multi-stage distortion challenge. NR or blind IQA (BIQA) methods usually rely on machine learning methods, such as deep neural networks (DNNs), to learn a quality model by training on subject-rated IQA databases. Due to constraints of subjective-testing, such annotated datasets are quite small-scale, containing at best a few thousands of images. This is in sharp contrast to the area of visual recognition where tens of millions of annotated images are available. Such a data challenge has become a major hurdle on the breakthrough of DNN-based IQA approaches. We address the data challenge by developing the largest IQA dataset, called the Waterloo Exploration-II database, which consists of 3,570 pristine and around 3.45 million distorted images which are generated by using content adaptive distortion parameters and consist of both singly and multiply distorted content. As a prerequisite requirement of developing an alternative annotation mechanism, we conduct the largest performance evaluation survey in the IQA area to-date to ascertain the top performing FR and fused FR methods. Based on the findings of this survey, we develop a technique called Synthetic Quality Benchmark (SQB), to automatically assign highly perceptual quality labels to large-scale IQA datasets. We train a DNN-based BIQA model, called EONSS, on the SQB-annotated Waterloo Exploration-II database. Extensive tests on a large collection of completely independent and subject-rated IQA datasets show that EONSS outperforms the very state-of-the-art in BIQA, both in terms of perceptual quality prediction performance and computation time, thereby demonstrating the efficacy of our approach to address the data challenge. In practical media distribution systems, visual content undergoes a number of degradations as it is transmitted along the delivery chain, making it multiply distorted. Yet, research in IQA has mainly focused on the simplistic case of singly distorted content. In many practical systems, apart from the final multiply distorted content, access to earlier degraded versions of such content is available. However, the three major IQA paradigms (FR, RR, and, NR) are unable to take advantage of this additional information. To address this challenge, we make one of the first attempts to study the behavior of multiple simultaneous distortion combinations in a two-stage distortion pipeline. Next, we introduce a new major IQA paradigm, called degraded reference (DR) IQA, to evaluate the quality of multiply distorted images by also taking into consideration their respective degraded references. We construct two datasets for the purpose of DR IQA model development, and call them DR IQA database V1 and V2. These datasets are designed on the pattern of the Waterloo Exploration-II database and have 32,912 SQB-annotated distorted images, composed of both singly distorted degraded references and multiply distorted content. We develop distortion behavior based and SVR-based DR IQA models. Extensive testing on an independent set of IQA datasets, including three subject-rated datasets, demonstrates that by utilizing the additional information available in the form of degraded references, the DR IQA models perform significantly better than their BIQA counterparts, thereby establishing DR IQA as a new paradigm in IQA
    corecore