12 research outputs found

    Multi-Magnification Search in Digital Pathology

    Get PDF
    This research study investigates the effect of magnification on content-based image search in digital pathology archives and proposes to use multi-magnification image representation. Image search in large archives of digital pathology slides provides researchers and medical professionals with an opportunity to match records of current and past patients and learn from evidently diagnosed and treated cases. When working with microscopes, pathologists switch between different magnification levels while examining tissue specimens to find and evaluate various morphological features. Inspired by the conventional pathology workflow, this thesis investigates several magnification levels in digital pathology and their combinations to minimize the gap between AI-enabled image search methods and clinical settings. This thesis suggests two approaches for combining magnification levels and compares their performance. The first approach obtains a single-vector deep feature representation for a WSI, whereas the second approach works with a multi-vector deep feature representation. The proposed content-based searching framework does not rely on any pixel-level annotation and potentially applies to millions of unlabelled (raw) WSIs. This thesis proposes using binary masks generated by U-Net as the primary step of patch preparation to locating tissue regions in a WSI. As a part of this thesis, a multi-magnification dataset of histopathology patches is created by applying the proposed patch preparation method on more than 8,000 WSIs of TCGA repository. The performance of both MMS methods is evaluated by investigating the top three most similar WSIs to a query WSI found by the search. The search is considered successful if two out of three matched cases have the same malignancy subtype as the query WSI. Experimental search results across tumors of several anatomical sites at different magnification levels, i.e., 20×, 10×, and 5× magnifications and their combinations, are reported in this thesis. The experiments verify that cell-level information at the highest magnification is essential for searching for diagnostic purposes. In contrast, low-magnification information may improve this assessment depending on the tumor type. Both proposed search methods generally performed more accurately at 20× magnification or the combination of the 20× magnification with 10×, 5×, or both. The multi-magnification searching approach achieved up to 11% increase in F1-score for searching among some tumor types, including the urinary tract and brain tumor subtypes compared to the single-magnification image search

    Deep Learning for Detection and Segmentation in High-Content Microscopy Images

    Get PDF
    High-content microscopy led to many advances in biology and medicine. This fast emerging technology is transforming cell biology into a big data driven science. Computer vision methods are used to automate the analysis of microscopy image data. In recent years, deep learning became popular and had major success in computer vision. Most of the available methods are developed to process natural images. Compared to natural images, microscopy images pose domain specific challenges such as small training datasets, clustered objects, and class imbalance. In this thesis, new deep learning methods for object detection and cell segmentation in microscopy images are introduced. For particle detection in fluorescence microscopy images, a deep learning method based on a domain-adapted Deconvolution Network is presented. In addition, a method for mitotic cell detection in heterogeneous histopathology images is proposed, which combines a deep residual network with Hough voting. The method is used for grading of whole-slide histology images of breast carcinoma. Moreover, a method for both particle detection and cell detection based on object centroids is introduced, which is trainable end-to-end. It comprises a novel Centroid Proposal Network, a layer for ensembling detection hypotheses over image scales and anchors, an anchor regularization scheme which favours prior anchors over regressed locations, and an improved algorithm for Non-Maximum Suppression. Furthermore, a novel loss function based on Normalized Mutual Information is proposed which can cope with strong class imbalance and is derived within a Bayesian framework. For cell segmentation, a deep neural network with increased receptive field to capture rich semantic information is introduced. Moreover, a deep neural network which combines both paradigms of multi-scale feature aggregation of Convolutional Neural Networks and iterative refinement of Recurrent Neural Networks is proposed. To increase the robustness of the training and improve segmentation, a novel focal loss function is presented. In addition, a framework for black-box hyperparameter optimization for biomedical image analysis pipelines is proposed. The framework has a modular architecture that separates hyperparameter sampling and hyperparameter optimization. A visualization of the loss function based on infimum projections is suggested to obtain further insights into the optimization problem. Also, a transfer learning approach is presented, which uses only one color channel for pre-training and performs fine-tuning on more color channels. Furthermore, an approach for unsupervised domain adaptation for histopathological slides is presented. Finally, Galaxy Image Analysis is presented, a platform for web-based microscopy image analysis. Galaxy Image Analysis workflows for cell segmentation in cell cultures, particle detection in mice brain tissue, and MALDI/H&E image registration have been developed. The proposed methods were applied to challenging synthetic as well as real microscopy image data from various microscopy modalities. It turned out that the proposed methods yield state-of-the-art or improved results. The methods were benchmarked in international image analysis challenges and used in various cooperation projects with biomedical researchers

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome
    corecore